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Abstract

Given a graph G, the strong clique number ω′
2(G) of G is the car-

dinality of a largest collection of edges every pair of which are incident
or connected by an edge in G. We study the strong clique number
of graphs missing some set of cycle lengths. For a graph G of large
enough maximum degree ∆, we show among other results the follow-
ing: ω′

2(G) ≤ 5∆2/4 if G is triangle-free; ω′
2(G) ≤ 3(∆ − 1) if G is

C4-free; ω′
2(G) ≤ ∆2 if G is C2k+1-free for some k ≥ 2. These bounds

are attained by natural extremal examples. Our work extends and
improves upon previous work of Faudree, Gyárfás, Schelp and Tuza
(1990), Mahdian (2000) and Faron and Postle (2019). We are moti-
vated by the corresponding problems for the strong chromatic index.

Keywords: strong clique number, strong chromatic index, forbid-
den cycles.

1 Introduction

A strong edge-colouring of a graph G is a partition of the edges E(G) into
parts each of which induces a matching; the strong chromatic index χ′2(G) of
G is the least number of parts in such a partition. Although easily defined,
χ′2 has proven very difficult to analyse: a conjecture of Erdős and Nešetřil [2]
from the 1980s is notorious. (∆G denotes the maximum degree of G.)

Conjecture 1 ([2]). For a graph G with ∆G = ∆, χ′2(G) ≤ 5
4∆2.
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If true, this bound would be sharp for even ∆, by considering a 5-cycle and
substituting each of its vertices with a copy of a stable set of size 1

2∆. Molloy
and Reed [9] proved the existence of some absolute constant ε > 0 such that
χ′2(G) ≤ (2−ε)∆2 for any graph G with ∆G = ∆. Despite significant efforts,
cf. e.g. [1], there is no explicit lower bound on ε greater than 0.001 (though
better results hold when ∆ is large).

The problem remains difficult if we restrict to a class defined by some
forbidden set of subgraphs, say, cycles. The following conjecture of Faudree,
Gyárfás, Schelp and Tuza [5] has also remained wide open since the 1980s.

Conjecture 2 ([5]). For a bipartite graph G with ∆G = ∆, χ′2(G) ≤ ∆2.

Balanced complete bipartite graphs meet the conjectured bound. A more
general assertion due to Mahdian [8] is also open: perhaps it suffices to
forbid just one in particular of the odd cycle lengths rather than all of them.

Conjecture 3 ([8]). For a C5-free graph G with ∆G = ∆, χ′2(G) ≤ ∆2.

By contrast, the best understood classes are when the forbidden set includes
some bipartite graph. In particular, Mahdian [8] showed the following for C4.
This was subsequently extended to a similar statement with C4 replaced by
any bipartite H by Vu [11]. See [7] for an explicit derivation with H = C2k.

Theorem 4 ([8]). Fix ε > 0. If G is a C4-free graph with ∆G = ∆, then,
provided ∆ is large enough, χ′2(G) ≤ (2 + ε)∆2/ log ∆. This is sharp up to
the multiplicative constant factor.

Note that graphs of small maximum degree remain a hypothetical obstruc-
tion to the outright confirmation of Conjectures 1 or 2 for C4-free graphs.

Based on the above frustrating state of affairs, it is justified to pursue a
simpler parameter than χ′2, even for restricted graph classes. In particular,
a strong clique of G is a set of edges every pair of which are incident or
connected by an edge in G; the strong clique number ω′2(G) of G is the size
of a largest such set. No two edges of a strong clique may have the same
colour in a strong edge-colouring, so ω′2(G) ≤ χ′2(G). Thus the following
classic result is viewed as supporting evidence towards Conjecture 2.

Theorem 5 ([6]). For a bipartite graph G with ∆G = ∆, ω′2(G) ≤ ∆2.

By forbidding just one fixed odd cycle length rather than all of them, we
refine and improve upon Theorem 5 as follows.

Theorem 6. Let G be a graph with ∆G = ∆.

(i) ω′2(G) ≤ 5
4∆2 if G is triangle-free.

(ii) ω′2(G) ≤ ∆2 if G is C5-free.

(iii) ω′2(G) ≤ ∆2 if G is C2k+1-free, k ≥ 3, provided ∆ ≥ 3k2 + 10k.
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The blown-up 5-cycles are triangle-free so Theorem 6(i) is best possible when
∆ is even. Parts (ii) and (iii) of Theorem 6 are sharp for the balanced com-
plete bipartite graphs. They are a common strengthening and generalisation
of Theorem 5 and a result of Mahdian [8, Thm. 15]. Part (ii) may be viewed
as support for Conjecture 3. Parts (i) and (ii) have a common ingredient,
but curiously the three proofs for Theorem 6 are all quite distinct.

We naturally find it interesting to also consider forbidden cycle lengths
that are even. In this case, we propose the following behaviour.

Conjecture 7. For a C2k-free graph G with ∆G = ∆, ω′2(G) ≤ (2k−1)(∆−
k + 1).

If true, this is sharp (for ∆ ≥ 2k − 2) by considering some clique on 2k − 1
vertices, to each vertex of which is attached ∆− 2k + 2 pendant edges. We
refer to this construction as a hairy clique of order 2k − 1.

In support of Conjecture 7, we have the following three bounds. The
first essentially settles the k = 2 case. The second is too large by an O(k)
factor. The third is almost the conjectured bound, but with the exclusion
of two more cycle lengths (also absent in the hairy clique of order 2k − 1).

Theorem 8. Let G be a graph with ∆G = ∆.

(i) ω′2(G) ≤ 3(∆− 1) if G is C4-free, provided ∆ ≥ 4.

(ii) ω′2(G) ≤ 10k2(∆− 1) if G is C2k-free, k ≥ 3.

(iii) ω′2(G) ≤ (2k − 1)(∆− 1) + 2 if G is {C2k, C2k+1, C2k+2}-free, k ≥ 2.

We invite the reader to notice the qualitative difference between exclud-
ing an odd cycle length versus an even one. In the latter case, Theorem 8(ii)
and Theorem 4 combine to reveal an asymptotic difference in extremal be-
haviour between the strong clique number and the strong chromatic index.
In the former case, it is conjectured that there is no such difference.

We have delved a little further by considering the effect of forbidden
(even) cycles within the class of bipartite graphs. For this specific case, we
propose the following.

Conjecture 9. For a C2k-free bipartite graph G with ∆G = ∆, ω′2(G) ≤
k(∆− 1) + 1.

If true, this is sharp (for ∆ ≥ k − 1) by considering a complete bipartite
graph Kk−1,∆ with parts of size k − 1 and ∆, to one vertex in the part of
size ∆ is attached ∆− k+ 1 pendant edges. In support of Conjecture 9, we
have the following result.

Theorem 10. For a {C3, C5, C2k, C2k+2}-free graph G with ∆G = ∆, ω′2(G) ≤
max{k∆, 2k(k − 1)}.

3



This is nearly sharp by the example mentioned just above. A small step in
the proof is a curious property of maximising the strong clique number: if
we are interested in a class of graphs that are {C3, C5}-free, then we may as
well exclude all other odd cycle lengths at the same time (Lemma 22). This
same reduction easily implies a result intermediary to Theorems 5 and 6(ii).

Let us remark that in general (i.e. without a cycle restriction) the bound
ω′2(G) ≤ 5

4∆2 remains conjectural. Śleszyńska-Nowak [10] showed a bound
of 3

2∆2, which was improved to 4
3∆2 by Faron and Postle [4].

Notational conventions

Let G be a graph or multigraph. V (G) denotes its vertex set. E(G) denotes
its edge set. L(G) denotes its line graph. We write |G| for |V (G)| and e(G)
for |E(G)| = |L(G)|.

Given a subset S ⊆ V (G), the sub(multi)graph induced by S is denoted
byG[S]. Given disjoint subsets S1, S2 ⊆ V (G), the bipartite sub(multi)graph
induced by the edges between S1 and S2 is denoted by G[S1×S2]. We write
EG(S2, S2) for E(G[S1 × S2]) and eG(S2, S2) for e(G[S1 × S2]). We write
IG(S) for E(G[S]) ∪ E(G[S × (V (G) \ S)]), the set of edges incident to S.
The neighbourhood NG(S) of S is the set {v′ | v ∈ S, v′ /∈ S, vv′ ∈ E(G)} of
neighbours of S. For a vertex v ∈ V (G), we write NG(v) instead of NG({v}).
The closed neighbourhood NG[v] of v is {v} ∪ NG(v). The degree degG(v)
of v is |IG({v})| (and so degG(v) = |NG(v)| if G is a simple graph). When
the context is clear, we sometimes drop the subscript G.

The distance between two vertices is the length of (i.e. the number of
edges in) a shortest path in G that joins them. The distance between two
edges is their distance in L(G). The distance between a vertex and an edge
is the smaller of the distances between the vertex and the endpoints. The
square G2 of G is formed from G by adding an edge for every pair of vertices
that are at distance 2. Note ω′2(G) = ω(L(G)2) and χ′2(G) = χ(L(G)2)
where ω denotes the clique number and χ the chromatic number.

2 No triangles or no 5-cycles

This section is devoted to showing parts (i) and (ii) of Theorem 6. A
common element of the proof is a lemma about the Ore-degree σG of G, the
largest over all edges of G of the sum of the two endpoint degrees. The
following generalises a recent result due to Faron and Postle [4].

Theorem 11. For a C5-free graph G, ω′2(G) ≤ 1
4σG

2.

This directly implies Theorem 6(ii) (and hence Theorem 5) because the
sum of two degrees in G is always at most 2∆G. Theorem 11 follows from a
slightly more technical version. For a sub(multi)graph H of a (multi)graph
G, the Ore-degree σG(H) of H in G is maxxy∈E(H)(degG(x) + degG(y)).
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Lemma 12. If G is a C5-free multigraph and H is a submultigraph of G such
that E(H) is a clique in L(G)2, then e(H) ≤ ∆H(σG(H)−∆H) ≤ 1

4σG(H)2.

Before proving this, we first show how it yields Theorem 6(i). (In fact, we
only need the weaker bipartite version due to Faron and Postle [4].)

Proof of Theorem 6(i). Let G be a triangle-free graph with ∆G = ∆. Let
H be a vertex-minimal subgraph of G whose edges form a maximum clique
in L(G)2. Let v ∈ V (G) be a vertex satisfying degH(v) = ∆H . From now
on we call H and its edges blue. Let GT = G[VT ] and HT = H[VT ], where
VT = V (H) \NG[v].

Let C1, C2, . . . denote the connected components of HT that contain at
least one edge. Fix one such component Ci and let pq be an edge in Ci.
For all x ∈ NH(v), the blue edges xv and pq must be within distance 2.
They are not incident, so either xp ∈ E(G) or xq ∈ E(G), but we cannot
have both since G is triangle-free. It follows that NH(v) can be partitioned
into Ai = NG(p) ∩ NH(v) and Ai = NG(q) ∩ NH(v). We will call

{
Ai, Ai

}
the partition induced by pq. Now suppose Ci contains an edge e which is
incident to pq. Then since G is triangle-free, e and pq must induce the
same partition. It follows inductively that all edges in Ci induce the same
partition

{
Ai, Ai

}
of NH(v). Figure 1 illustrates this structure.

Let C1, . . . , Ck be the components (if they exist) that induce the trivial
partition {∅, NH(v)}. Let M = |C1| + · · · + |Ck| denote the number of
edges that are in these ‘trivial’ components. On the other hand, let Gbip =
G[
⋃
i≥k+1 V (Ci)] and Hbip = H[

⋃
i≥k+1 V (Ci)] be the graphs induced by the

remaining ‘nontrivial’ components.

Claim 13. M ≤ (∆−∆H)∆.

Claim 14. σGbip
(Hbip) ≤ 2∆−∆H −M/∆.

Claim 15. Gbip is bipartite.

Before proving these claims, we show how they imply the theorem. Note
that E(Hbip) is a clique not only in L(G)2 but also in L(Gbip)2. So by
Claim 15, we may apply Lemma 12 and then Claim 14, yielding

e(Hbip) ≤ 1

4
σGbip

(Hbip)2 ≤ 1

4

(
2∆−∆H −

M

∆

)2

.

It follows that ω(L(G)2) is at most

e(H) = |IH(NG(v))|+ e(HT ) ≤ ∆H degG(v) +M + e(Hbip)

≤ ∆H∆ +M +
1

4

(
2∆−∆H −

M

∆

)2

= ∆2 +
1

4

(
∆H +

M

∆

)2

≤ 5

4
∆2,
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v

NH(v)

GT

NG\H(v)

X1 Y1

X2 Y2

Figure 1: The structure described in the proof of Theorem 6(i). Blue edges
are in H, red edges are in G but not in H, and black edges could be either.
In this picture, Hbip ⊆ GT has two (blue) connected components, induced by
X1 ∪Y1 respectively X2 ∪Y2. The blue neighbourhood NH(v) is partitioned
into two sets A1 (its left two vertices) and A1 (the remaining three vertices
on the right), such that X1 is complete to A1 and Y1 is complete to A1. The
neighbourhoods of X2 and Y2 induce another partition of NH(v). Not all
edges are depicted here. In particular, we have left out the (possibly red)
edges inside GT that ensure that all of its blue edges are within distance 2.
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where we used Claim 13 in the last line. This concludes the proof, condi-
tioned on Claims 13–15.

Given the ith component Ci, let Xi respectively Yi denote the set of
vertices in Ci whose neighbourhood in NH(v) is Ai respectively Ai. Note
that Xi is complete to Ai and Yi is complete to Ai. Furthermore, the
bipartite subgraph of H induced by Ci has parts Xi and Yi.

Proof of Claim 13. If Ci is a trivial component (1 ≤ i ≤ k) then Yi is com-
plete to Ai = NH(v). Therefore |

⋃
1≤i≤k Yi| ≤ ∆, and for the same reason all

y ∈
⋃

1≤i≤k Yi satisfy degHT
(y) ≤ ∆−∆H . SoM ≤

∑
y∈

⋃
1≤i≤k Yi

degHT
(y) ≤

∆(∆−∆H). ♦

Proof of Claim 14. Let e = pq ∈ E(Hbip). Then for all x ∈ NH(v), x must
be adjacent to either p or q. So there are degH(v) = ∆H edges between
{p, q} and NH(v). Also, pq must be at distance 2 of each of the M edges
induced by the trivial components. So there are at least M/∆ edges between
{p, q} and the trivial components. So at least ∆H +M/∆ edges incident to
{p, q} are not in Gbip. It follows that σGbip

(e) = degGbip
(p) + degGbip

(q) ≤
2∆−∆H −M/∆. ♦

Proof of Claim 15. Suppose there are two different nontrivial components,
Ci and Cj . We will first show that we may then assume that either Ai ⊆ Aj
or Aj ⊆ Ai. Indeed, if either Aj ⊆ Ai or Ai ⊆ Aj , then after interchanging
Xj and Yj (and thus interchanging Aj and Aj), we obtain Aj ⊆ Ai or
Ai ⊆ Aj . So we may assume for a contradiction that none of Ai ⊆ Aj , Ai ⊆
Aj , Aj ⊆ Ai, Aj ⊆ Ai holds. But then there exist a ∈ Ai ∩ Aj , b ∈ Ai ∩
Aj , c ∈ Ai ∩ Aj and d ∈ Ai ∩ Aj . Furthermore, because each component
contains at least one blue edge, there are blue edges (xi, yi) ∈ Xi × Yi and
(xj , yj) ∈ Xj × Yj that have to be connected by an edge in order to have
them within distance 2. If xixj is an edge, then xixjb forms a triangle.
Similarly, if xiyj , yiyj or xjyi is an edge then xiyja, yiyjd or xjyic is a
triangle, respectively. Contradiction.

It follows that we can reorder the components by inclusion, so that
Ak+1 ⊆ Ak+2 ⊆ · · · . Now we are ready to show that Gbip is bipartite
on parts X =

⋃
i≥k+1Xi and Y =

⋃
i≥k+1 Yi. Suppose X is not a stable set.

Then there are x1, x2 ∈ X that form an edge, where x1 ∈ Xi and x2 ∈ Xj

for some i ≤ j. Since ∅ 6= Ai ⊆ Aj , there must be a triangle in x1x2Ai.
Contradiction. Similarly, suppose Y is not a stable set. Then there are
y1, y2 ∈ Y that form an edge, where y1 ∈ Yi and y2 ∈ Yj for some i ≤ j.
Since ∅ 6= Aj ⊆ Ai, there must be a triangle in y1y2Aj . Contradiction. ♦

This completes the proof of Theorem 6(i).
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Proof of Lemma 12. Let G be a C5-free multigraph and H be a submulti-
graph of G whose edges form a maximum clique in L(G)2. Let v ∈ V (G) be
a vertex satisfying degH(v) = ∆H .

We may assume that |NH(v)| ≥ 2. Indeed if |NH(v)| = 1 then, writing
NH(v) = {u}, the multiplicity of uv in H is equal to ∆H . Each vertex in
NG({u, v}) is incident to at most ∆H edges of H, and there are at most
degG(u) + degG(v)− 2∆H ≤ σG(H)− 2∆H such vertices. Therefore e(H) ≤
∆H + (σG(H)− 2∆H)∆H ≤ ∆H(σG(H)−∆H), as desired.

Now let E∗ ⊆ E(H) denote the set of those edges st ∈ E(H) for which
s, t /∈ NG(v). Let st ∈ E∗. Then, for all u ∈ NH(v), vu must be within
distance 2 of st, so either us ∈ E(G) or ut ∈ E(G). Without loss of gene-
rality, us ∈ E(G). Because G has no C5 and |NH(v)| ≥ 2, it follows that t
is anticomplete to NH(v) \ {u}, so in fact s is complete to NH(v) and t is
anticomplete to NH(v). We derived this for all st ∈ E∗, so there exists a
subset S ∈ V (H) such that

(i) E∗ ⊆ IH(S), and

(ii) S is complete to NH(v).

Since each edge of H is either in E∗ (and thus has an endpoint in S) or
has an endpoint in NG(v), we can cover E(H) with the following subsets:

ES = IH(S), E1 = IH(NG(v) \NH(v)), and E2 = IH(NH(v)) \ ES .

Each vertex is incident to at most ∆H edges of H, so |ES | ≤ ∆H |S|. Further-
more, |E1| ≤ ∆H |NG(v) \NH(v)| ≤ ∆H(degG(v)−∆H) by our choice of v.
By property (ii), each vertex x ∈ NH(v) is incident to at most degG(x)−|S|
edges that are not incident to S. Thus, |E2| ≤

∑
x∈NH(v)(degG(x)− |S|) ≤

∆H(σG(H)− degG(v)− |S|). In conclusion,

e(H) ≤ |ES |+ |E1|+ |E2| ≤ ∆H(σG(H)−∆H).

The last expression is largest if ∆H = 1
2σG(H), so e(H) ≤ 1

4σG(H)2.

3 No (2k + 1)-cycles or no 2k-cycles

In this section, we prove Theorem 6(iii) and Theorem 8(ii). The methods
are quite different from those of the previous section. In both proofs, we
utilise a Turán-type lemma for graphs with no path P2k+1 of order 2k + 1
as a subgraph.

Given a graph G and a subset S ⊆ V (G), an edge uv out of S, with
u ∈ S and v /∈ S, say, is called b-branching out of S if |NG(v) ∩ S| ≥ b.

Lemma 16. Fix k ≥ 2. Given a graph G and a subset X ⊆ V (G), if
G[X × (V (G) \X)] is P2k+1-free, then at most k2|X| edges are k-branching
out of X.
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Proof. Let G and X ⊆ V (G) satisfy the hypothesis. Without loss of genera-
lity, we may assume that G is connected. We prove the result by induction
on |X|. The statement is trivially true if |X| < k. For the induction, let us
assume that |X| ≥ k(≥ 2) and that the statement is true for any X ′ ⊆ V (G)
with |X ′| < |X|.

Suppose there is some x ∈ X that is incident to at most k edges that are
k-branching. We then have by induction that there are at most k2(|X| − 1)
edges that are k-branching out of X \{x}. Let us call a vertex v /∈ X pivotal
if there exists an edge incident to v which is k-branching out of X but not
k-branching out of X \ {x}. Each pivotal vertex must be adjacent to x and
must have exactly k − 1 neighbours in X \ {x}. It follows that there are at
most k pivotal vertices, each of which is incident to exactly k edges that are
k-branching out of X (but not k-branching out of X \ {x}). In conclusion,
at most k2(|X| − 1) + k2 = k2|X| edges are k-branching out of X.

There remains the possibility that every vertex of X is incident to at least
k + 1 edges that are k-branching. In this case, however, we can construct
a path through the following iterative process. Consider an arbitrary k-
branching edge out of X and let x′0 be its endpoint in V (G)\X. Suppose
we have constructed a path x′0x0 · · ·x′i−1xi−1x

′
i for some i ≥ 0, such that

x′i is incident to an edge which is k-branching out of X. Note that x′i
has at least k neighbours in X by definition. If i < k, we may choose
xi ∈ X \ {x0, . . . , xi−1}. Subsequently, we may choose a k-branching edge
xix
′
i+1 such that x′i+1 ∈ V (G)\(X∪{x′0, . . . , x′i}). This process certifies that

x′0x0 · · ·x′k is in G[X × (V (G) \X)]. This path is of order 2k + 1, contrary
to our assumption.

In addition to Lemma 16, we need a basic bound on the Turán number
of a path P`+1 of order `+ 1 due to Erdős and Gallai [3].

Lemma 17 ([3]). For a P`+1-free graph G, e(G) ≤ (`− 1)|G|/2.

Proof of Theorem 6(iii). Let G be a C2k+1-free graph with ∆G = ∆ ≥ 16k.
Let H be a subgraph of G whose edges form a maximum clique in L(G)2.
Thus bounding ω(L(G)2) is equivalent to bounding e(H). Let v ∈ V (G)
be a vertex satisfying degH(v) = ∆H . For short, we write Av = NG(v)
and Bv = NG(NG[v]). Note that if E(H[Bv]) = ∅, then every edge in H is
incident to Av, and e(H) ≤ degG(v)∆ ≤ ∆2.

For any edge xy ∈ E(H[Bv]), it must hold that NH(v) ⊆ NG({x, y}).
If, for every such edge, it holds that NG(x) ∩ NH(v) = ∅, say, (and so
NH(v) ⊆ NG(y),) then e(H) ≤ degG(v)∆H + ∆(∆−∆H) ≤ ∆2.

Fix xy ∈ E(H[Bv]) such thatNG(x)∩NH(v) 6= ∅ andNG(y)∩NH(v) 6= ∅.
Let {X,Y } be a non-trivial partition of NH(v) such that X ⊆ NG(x) and
Y ⊆ NG(y). We will need the following claim.

Claim 18. (i) G[Av] is P2k-free.
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(ii) G[X × (Bv \ {x, y})] and G[Y × (Bv \ {x, y})] are P2k−1-free.

Proof. (i) If G[Av] contains a path P of order 2k, then the concatenation
of P with v is a cycle of order 2k + 1 in G, a contradiction.

(ii) If G[X × (Bv \ {x, y})] (say) contains a path of order 2k− 1, then there
must be a subpath P of order 2k− 3 such that both its endpoints are in X.
Now for any b ∈ Y , the concatenation of P with the path vbyx is a cycle of
length 2k + 1 in G, a contradiction.

Letting C denote the set of (2k− 3)-branching edges out of NH(v) with
respect to the graph G[NH(v)× (Bv \ {x, y})], note that the edges of H can
be covered by the following six sets:

IH({v, x, y}), IH(NG(v) \NH(v)), E(H[Av]),

C, EH(NH(v), Bv \ {x, y}) \ C, E(H[Bv \ {x, y}]).

We have |IH({v, x, y})| ≤ 3∆H − 1 and |IH(NG(v) \ NH(v))| ≤ (∆ −
∆H)∆H . Also, e(H[Av]) ≤ (k − 1)∆ by Lemma 17 and Claim 18(i).

Let Cx (resp. Cy) be the set of (k−1)-branching edges out of X (resp. Y )
with respect to the graph G[X×(Bv\{x, y})] (resp. G[Y ×(Bv\{x, y})]). By
Lemma 16 and Claim 18(ii), |Cx| ≤ (k− 1)2|X| and |Cy| ≤ (k− 1)2|Y |. By
the pigeonhole principle, for every set of edges of C incident to a single vertex
in Bv \ {x, y}, more than half of them belong to Cx or to Cy. Thus |C| ≤
2((k−1)2|X|+(k−1)2|Y |) = 2(k−1)2∆H . We next bound |EH(NH(v), Bv \
{x, y}) \ C|.

Supposing that there are edges in EH(NH(v), Bv \ {x, y}) \C, let A′ be
the set of vertices in NH(v) that are incident to such an edge and let u ∈ A′
be a vertex of minimum degree in H[A′]. Note that degH[A′](u) ≤ 2(k − 1)
by Lemma 17 and Claim 18(i). Let uw ∈ EH(NH(v), Bv \ {x, y}) be an
edge that is not (2k− 3)-branching out of NH(v). By crudely bounding the
number of edges that are within distance 2 of uw and not (2k−3)-branching,
we have that

|EH(NH(v), Bv \ {x, y}) \ C|
≤ |NG(u) ∩ (Bv \ {x, y})| · (2k − 4) + |NG(w) ∩ (Bv \ {x, y})| · (2k − 4)

+ |NG(u) ∩A′| ·∆ + (|NG(w) ∩A′| − 1) ·∆
≤ ∆(2k − 4) + ∆(2k − 4) + 2(k − 1)∆ + (2k − 5)∆

= (8k − 15)∆.

It only remains to bound the number of edges of H[Bv \ {x, y}]. First
observe that we may assume degH(v) = ∆H ≥ 4k− 6, for otherwise e(H) ≤
|NH [{u,w}]|∆H < 2(4k − 6)∆ (which is at most ∆2 if ∆ ≥ 16k). Let
x′y′ be an edge of H[Bv \ {x, y}]. Write dx′ for |NG(x′) ∩ NH(v)| and dy′

for |NG(y′) ∩ NH(v)|. As we have already observed earlier, NG({x′, y′}) ⊇
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NH(v), and so dx′ + dy′ ≥ ∆H . If both dx′ ≥ 2k − 3 and dy′ ≥ 2k − 3, then
the number of edges of C incident to {x′, y′} is at least dx′ + dy′ ≥ ∆H ,
and so one of x′ or y′, say y′, is incident to at least ∆H/2 edges of C.
Otherwise, dx′ ≤ 2k − 4 (say) and so dy′ ≥ ∆H − 2k + 4 ≥ ∆H/2, in which
case y′ is incident to at least ∆H/2 edges of C. In either case, the number
of edges of H[Bv \ {x, y}] incident to y′ is at most ∆ − ∆H/2. Since x′y′

was arbitrary, what we have shown is that H[Bv \ {x, y}] admits a vertex
cover each member of which is incident to at least ∆H/2 edges of C and to
at most ∆−∆H/2 edges of H[Bv \{x, y}]. The size of this vertex cover is at
most |C| divided by ∆H/2. It then follows, using our earlier derived bound
on |C|, that

e(H[Bv \ {x, y}]) ≤
2(k − 1)∆H

∆H/2
(∆−∆H/2)

= 2(k − 1)(2∆−∆H).

Summing all of the above estimates, we deduce that the number of edges
in H is at most

3∆H − 1 + (∆−∆H)∆H + (k − 1)∆

+ 2(k − 1)2∆H + (8k − 15)∆ + 2(k − 1)(2∆−∆H)

≤ 1

4
∆2 + (2k2 + 7k − 13)∆,

which is at most ∆2 if ∆ ≥ 3k2 + 10k.

Proof of Theorem 8(ii). Let G be a C2k-free graph with ∆G = ∆. Let H
be a subgraph of G whose edges form a maximum clique in L(G)2. Choose
an edge uv ∈ E(H), and define Au = NG(u) \ {v} and Av = NG(v) \NG[u].
For short we will write A = Au∪Av for the neighbourhood of {u, v} and we
also need the second-order neighbourhood B = NG(A) \ (A ∪ {u, v}). Note
that |A| ≤ 2∆− 2.

Letting C denote the set of (2k − 1)-branching edges out of A ∪ {u, v},
note that the edges of H can be covered by the following four sets:

IH({u, v}), E(H[A]), C, EH(A,B) \ C.

Claim 19. (i) G[A] is P2k−1-free.

(ii) G[Au ×B] and G[Av ×B] are P2k+1-free.

Proof. (i) Suppose that there is a path x0 · · ·x2k−2 of order 2k−1 in G[Au∪
Av]. Without loss of generality assume that x0 ∈ Au. Then x2k−3 /∈ Av or
else ux0 · · ·x2k−3v would be a cycle of length 2k in G, a contradiction. So
x2k−3 ∈ Au. Also x2k−2 ∈ Av or else ux0 · · ·x2k−2 would be a cycle of
length 2k. Then x1 ∈ Av or else ux1 · · ·x2k−2v would be a cycle of length
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2k. Now take the least i such that x2i−1 ∈ Av and x2i+1 ∈ Au. Since
x1 ∈ Av and x2k−3 ∈ Au, such an i ∈ [2k − 2] exists. But this implies that
ux0 · · ·x2i−1vx2k−2 · · ·x2i+1 is a cycle of length 2k, a contradiction.

(ii) In any path of order 2k + 1 in G[Au ×B], say, there is a path of order
2k − 1 with both of its endpoints in Au. This path together with u forms a
C2k in G, a contradiction. ♦

Note that |IH({u, v})| ≤ 2∆ − 1. By Lemma 17 and Claim 19(i),
e(H[A]) ≤ (k− 1)|A|. Let Cu (resp. Cv) be the set of k-branching edges out
of Au∪{u} (resp. Av∪{v}) with respect to the graphG[Au∪V (G)\(Av∪{v})]
(resp. G[Av ∪ V (G) \ (Au ∪ {u})]). By Lemma 16 and Claim 19(ii), |Cu| ≤
k2|Au| and |Cv| ≤ k2|Av|. By the pigeonhole principle, for every set of edges
of C incident to a single vertex in B, more than half of them belong to Cu
or to Cv. Thus |C| ≤ 2(k2|Au| + k2|Av|) = 2k2|A|. It remains to bound
|EH(A,B) \ C|.

Assuming that EH(A,B) \C 6= ∅, let A′ ⊆ A be the set of those vertices
in A that are incident to some edge of EH(A,B) \ C and let x ∈ A′ be
a vertex of minimum degree in H[A′]. Note that degH[A′](x) ≤ 2k − 3 by
Lemma 17 and Claim 19(i). Let xy ∈ E(H) be an edge that is not (2k− 1)-
branching out of A∪ {u, v}. By crudely bounding the number of edges that
are within distance 2 of xy and not (2k − 1)-branching, we have that

|EH(A,B) \ C| ≤ |NG(x) ∩B| · (2k − 2) + |NG(y) ∩B| · (2k − 2)

+ |NG(x) ∩A′| ·∆ + (|NG(y) ∩A′| − 1) ·∆
≤∆(2k − 2) + ∆(2k − 2) + (2k − 3)∆ + (2k − 3)∆

= (8k − 10)∆.

Combined with the previous estimates and using that ∆ ≥ 3 (otherwise
G is a collection of vertex-disjoint paths and cycles, so the theorem follows
straightforwardly), we obtain

e(H) ≤ 2∆− 1 + (2k2 + k − 1)|A|+ (8k − 10)∆

≤ (4k2 + 10k − 10)∆ + 1− 2k − 2k2 ≤ (5k2 + 14k)(∆− 1).

4 No three consecutive cycle lengths

In this section, we prove a stronger version of Theorem 8(iii).

Theorem 20. Let G be a graph with ∆G = ∆.

(i) ω(L(G)2) ≤ (κ− 2)(∆− 1) + 2 if G is Pκ+1-free, κ ≥ 3.

(ii) ω(L(G)2) ≤ (`− 2)(∆− 1) + 2 if G is {C`−1, C`, C`+1}-free, ` ≥ 5.
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Proof of Theorem 20. If ∆ = 1 then ω(L(G)2) = 1. If ∆ = 2, then G is
a path or a cycle, or a vertex-disjoint union of such graphs. For all such
graphs, ω(L(G)2) ≤ 5 ≤ (`−2)(∆−1)+2. Furthermore, if G is not a 4-cycle
or 5-cycle then ω(L(G)2) ≤ 3, so ω(L(G)2) ≤ (κ− 2)(∆− 1) + 2. Thus we
may assume from now on that ∆ ≥ 3. The idea of the proof is to assume
that ω(L(G)2) is large and then iteratively construct a path of order l + 1
(respectively k + 1) whose extremal edges are in E(H). This will imply the
existence of a cycle (respectively path) of forbidden length; contradiction.

Let H be a subgraph of G whose edges form a maximum clique in L(G)2.
Note that e(H) = ω(L(G)2) > ∆, for otherwise the conclusion of the the-
orem is already satisfied. It follows that G contains a path P4 = x1y1x2y2

that starts and ends on edges x1y1, x2y2 from E(H). Indeed, let e1 and e2

be edges of E(H). If they are not incident to each other, then there must
be an edge between them and we have obtained the desired P4. So we may
assume that all edges of E(H) are pairwise incident and in particular we
can write e1 = xy and e2 = yz. At most ∆ edges meet in y, so E(H)
contains an edge e3 that is not incident to y and therefore e3 is incident to
x. If e3 = xq 6= xz then qxyz forms the desired P4. Otherwise xyz forms
a triangle of edges from E(H). Since e(H) ≥ ∆ + 1 ≥ 4, there is a fourth
edge in E(H) incident to the triangle, again yielding a P4.

We now define the paths W1 := y1x2 and W ∗1 := x1y1x2y2, the latter
being the P4 whose existence we derived above. These paths serve as the
initialisation step of a construction (described below). The input of this
construction is given by a path Wi := y1x2y2 . . . yi−1xi and a ‘preliminary’
path W ∗i := x1Wiyi, with the property that the first and final edge of W ∗i
are in E(H). The output consists of longer paths Wi+1 and W ∗i+1, with
the same properties. For this construction to work, we need the edge set
Fi := E(H) \ (IH(Wi) ∪ {x1yi}) to be nonempty.

As long as Fi is nonempty, we iterate the following case consideration.

Case 1. Fi contains an edge which is incident to the first vertex x1 or the
last vertex yi of W ∗i .

Choose such an edge ei+1 ∈ Fi and assume without loss of generality
that it is incident to yi. Then we add ei+1 to our preliminary path, and we
set W ∗i+1 = Wiei+1 and Wi+1 = W ∗i . By the definition of Fi, yi is the only
vertex in W ∗i that is incident to ei+1, so W ∗i+1 is a path as well.
Case 2. Case 1 does not apply.

Then Fi contains an edge xi+1yi+1 which is not incident to x1 or yi. By
the definition of Fi, xi+1yi+1 is not incident to xi either. Therefore there
must be an edge e∗ between xi+1yi+1 and xiyi. Without loss of generality,
e∗ is incident to xi+1, so we have xixi+1 ∈ E(G) or yixi+1 ∈ E(G).

Subcase 2.1. xixi+1 ∈ E(G).
Then we set W ∗i+1 = Wixi+1yi+1 and Wi+1 = Wixi+1.

Subcase 2.2. yixi+1 ∈ E(G) and subcase 2.1 does not apply.
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Then we set W ∗i+1 = Wiyixi+1yi+1 = W ∗i xi+1yi+1 and Wi+1 = Wiyixi+1.

After the final iteration I, the set FI is empty. Since FI = E(H) \
(IH(WI) ∪ {x1yI}) and because the number of edges incident to WI is at
most (∆− 1)|WI |+ 1, it follows that 0 = |FI | ≥ e(H)− 2− (∆− 1)|WI |.

Because G is Pκ+1-free, our constructed path W ∗I cannot be too large.
More precisely, we must have κ ≥ |W ∗I | = |WI |+ 2, and therefore

ω(L(G)2) = e(H) ≤ (∆− 1)|WI |+ 2 ≤ (∆− 1)(κ− 2) + 2.

This concludes the proof of (i). For (ii), we extend the argument slightly.
Suppose for a contradiction that ω(L(G)2) = e(H) ≥ (` − 2)(∆ − 1) + 3.

Then W ∗I is a path on |WI |+ 2 ≥ e(H)−2
∆−1 + 2 ≥ `+ 1

∆−1 vertices. Note that

in the ith iteration, the order of the path W ∗i is increased by either 1 or 2.1

Therefore there exists a j ≤ I such that |W ∗j | ∈ {`, `+ 1}.
From now on, let us call the edges of E(H) blue and the other edges of

E(G) red. First we derive that it suffices to show the existence of a P`+1 that
starts and ends on blue edges. Suppose G has a path A of order ` + 1 ≥ 6
that starts with a blue edge a1a2 and ends on another blue edge a`a`+1.
These (nonincident) blue edges must be within distance 2, so there must
be an edge between them that is not part of A. If a1a`+1 ∈ E(G), then
a1a2 . . . a`+1 is a C`+1. Similarly, if a1a` ∈ E(G) or a2a`+1 ∈ E(G), then
there is a C`. Finally, if a2a` ∈ E(G), then there is a C`−1. So G contains
a cycle of order `− 1, ` or `+ 1; contradiction.

So we may assume that |W ∗j | = ` and |W ∗j+1| = `+2. To finish the proof,
we will derive that G then contains another path of order `+1, starting and
ending on blue edges.

Write W ∗j = w1 . . . w`. First, since |W ∗j+1| − |W ∗j | = 2, we must have
that W ∗j+1 = W ∗j w`+1w`+2, where w`w`+1 is a red edge and w`+1w`+2 is
blue. Second, since w1w2 and w`+1w`+2 are at distance 2, there is an edge
e∗ between them. From this observation, we obtain the desired P`+1 unless
e∗ = w1w`+2. Third, w1w2 and w`−1w` must be at distance 2 from each
other, so they are connected by an edge e∗∗ that is not part of W ∗j . This
yields a forbidden C` or C`−1, unless e∗∗ = w2w`−1. Fourth, note that
w`−2w`−1 is red, for otherwise w`+1w`+2w1w2 . . . w`−2w`−1 would yield the
desired P`+1.

In summary, we have obtained the cycle Γ = w1+1 . . . w`+2, where w1w2,
w`−1w` and w`+1w`+2 are blue, and w`−2w`−1 is red. Furthermore, it holds
that w2w`−1 ∈ E(G).

Next, we are going to focus on the edge e∗∗∗ = w`−3w`−2. Since ` ≥ 5,
this edge is different from the first edge w1w2. Suppose that e∗∗∗ is blue.

Then w`−2w`−3 . . . w2w`−1w`w`+1w`+2 forms a P`+1 starting and ending
on blue edges. Suppose on the other hand that e∗∗∗ is red. Because e∗∗∗

1|W ∗i+1| − |W ∗i | is equal to one in case 1 and subcase 2.1, and equal to two in subcase
2.2.
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and w`−2w`−1 are consecutive red edges of W ∗j+1, it follows from the con-
struction of the paths (W ∗i )1≤i≤j+1 that there must be a pendant blue edge
w`−2wp that is only incident to Γ in the vertex w`−2. (This pendant edge
used to be the blue end-edge of some preliminary path W ∗i , i < j.) Now
wpw`−2w`−3 . . . w2w1w`+2w`+1 forms a P`+1, starting and ending on blue
edges.

5 No 4-cycles

In this section we prove Theorem 8(i). We proceed by a case analysis. In
Subsubcases 2.1.2 and 2.2.1 and Subsubsubcase 2.2.2.2 we can reduce to
the case of the neighbourhood of a triangle, which constitutes exactly the
extremal hairy triangle. In the other situations, we derive bounds that are
smaller, at most 2∆ in particular.

Proof of Theorem 8(i). Let G be a C4-free graph with ∆G = ∆ ≥ 4. Let
H be a blue subgraph of G whose edges form a maximum clique in L(G)2.
Thus bounding ω(L(G)2) is equivalent to bounding e(H). Choose an edge
uv ∈ E(H), and define Au = NG(u) \ {v} and Av = NG(v) \ NG[u]. For
short we will write A = Au∪Av for the neighbourhood of {u, v} and we also
need the second-order neighbourhood B = NG(A) \ (A ∪ {u, v}).

Note that the edges of H can be partitioned into the following six sets:

EH({u}, A), EH({v}, A), EH(Au, B), EH(Av, B), E(H[A]), {uv}.

We will use the following claim a few times.

Claim 21. e(H[A]) ≤ 1.

Proof. If not, then G[A] must contain a path of order three, which forms a
C4 with u and/or v. ♦

We now start the case analysis.

Case 1. No vertex in A has two blue neighbours in B.
The first thing to notice is that Au and Av each contain at most three ver-

tices with a blue edge to B. Indeed, if there are four such vertices x1, . . . , x4

with blue neighbours y1, . . . , y4 ∈ B respectively, then the (yi)1≤i≤4 must
be pairwise distinct to prevent a C4. Therefore the blue edges (xiyi)1≤i≤4

are pairwise at distance exactly 2. There can be at most two edges in
G[{x1, x2, x3, x4}] and these must be nonincident, for otherwise they form a
C4 with v. Say these edges are x1x2 and x3x4 (or a subset thereof). Then
y1y2y2y4 is a C4, contradiction. Second, it cannot be that both eH({v}, A) ≥
2 and eH(Au, B) ≥ 2. Indeed, otherwise there are two vertices in NH(v) that
must be complete to two vertices in B ∩ NH(Au), thus forming a C4, con-
tradiction. So eH({v}, A) + eH(Au, B) ≤ ∆ (where here we also used our
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assumption that ∆ ≥ 4). And similarly eH({u}, A) + eH(Av, B) ≤ ∆. It
follows that e(H) is at most

eH({v}, A) + eH(Au, B) + eH({u}, A) + eH(Av, B) + e(H[A]) + |{uv}|
≤ ∆ + ∆ + 1 + 1 = 2∆ + 2. (1)

This is bounded from above by 3(∆− 1) if ∆ ≥ 5. To conclude the same for
the case ∆ = 4, we need to reduce the bound in equation (1) by 1.

If e(H[A]) = 0, then we get the desired improvement for free. If, on
the other hand, E(H[A]) is nonempty, then its unique edge ab has both
endpoints in either N(u) \N(v) or in N(v) \N(u), (otherwise abuv would
form a C4). Without loss of generality, assume ab is induced by N(u)\N(v).
In that case it follows that EH({v}, A) = ∅ (or otherwise a blue neighbour
of v in A would have to be adjacent to a or b, forming a C4.)

But then eH({v}, A) + eH(Au, B) ≤ 0 + ∆− 1, so we have again reduced
the upper bound in (1) by 1, as desired.
Case 2. At least one vertex in A has two blue edges to B.

Without loss of generality, let x ∈ Au be such a vertex and let x∗1, x
∗
2

denote two of its blue neighbours in B.

Subcase 2.1. x is the only vertex in Au that has a blue edge to B.

Subsubcase 2.1.1. vx /∈ E(G).
Suppose there exists vy ∈ EH({v}, Av). Then y 6= x because vx /∈ E(G).

Also, yx /∈ E(G) because otherwise uvyx would be a C4. So y must be
adjacent to the two blue neighbours x∗1, x

∗
2 of x in B, in order to have vy

within distance 2 of xx∗1 and xx∗2. But then xx∗1x
∗
2y forms a C4. We deduce

EH({v}, Av) = ∅. (2)

We now show that it is impossible for both eH({u}, Au) ≥ 2 and eH(Av, B) ≥
1 to hold. Indeed, suppose there are x1, x2 ∈ EH({u}, Au) and a blue
neighbour y∗ ∈ B of some y ∈ Av. Since uy, uy∗, x1y, x2y /∈ E(G) while yy∗

must be within distance 2 of both ux2 and ux1, it follows that y∗x1, y
∗x2 ∈

E(G), yielding the 4-cycle ux1x2y
∗. Contradiction.

If eH(Av, B) = 0 then e(H) ≤ |NH(u)∪NH(x)|+ e(H[A]) ≤ (2∆− 1) +
1 ≤ 3(∆− 1), as desired. So we may from now on assume that

eH({u}, Au) ≤ 1. (3)

Next, we want to show that eH(Av, B) ≤ 4. Suppose for a contradiction
that eH(Av, B) ≥ 5.

Suppose first that there exists y ∈ Av with (at least) three blue neigh-
bours y∗1, y

∗
2, y
∗
3 in B. Recall that x∗1, x

∗
2 ∈ B are two blue neighbours of

x. Since {x∗1, x∗2} has at most one element in common with {y∗1, y∗2, y∗3}
(otherwise there is a C4) we may without loss of generality assume that
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{x∗1, x∗2} ∩ {y∗1, y∗2} = ∅. If xy∗1, xy
∗
2, yx

∗
1, yx

∗
2 /∈ E(G), then {x∗1, x∗2} must

be complete to {y∗1, y∗2}, yielding a C4. So without loss of generality xy∗1 ∈
E(G). This implies xy∗2, yx

∗
1, yx

∗
2 /∈ E(G) (otherwise there is a C4 containing

x and y). So in order to have yy∗2 within distance 2 of xx∗1 and xx∗2, we must
have x∗1y

∗
2, x
∗
2y
∗
2 ∈ E(G), yielding xx∗1y

∗
2x
∗
2 as a C4. Contradiction. So we

have derived that each y ∈ Av has at most two blue neighbours in B.
Now suppose that some vertex y12 ∈ Av has two blue neighbours y∗1, y

∗
2

in B. By the argument in the previous paragraph, it may not be that
|{x∗1, x∗2} ∩ {y∗1, y∗2}| ∈ {0, 2}, so without loss of generality x∗2 = y∗2.

Additionally suppose there is another vertex y34 ∈ Av with two blue
neighbours y∗3, y

∗
4 in B. By the same argument, one of {y∗3, y∗4} is equal to

one of {x∗1, x∗2}. But x∗2 = y∗2 /∈ {y∗3, y∗4} (otherwise there is a C4 containing
y∗2 and v), so without loss of generality y∗4 = x∗1. Since we assumed that
eH(Av, B) ≥ 5, there is yet another vertex y5 ∈ Av with (at least) one
neighbour y∗5 ∈ B. Since y5y

∗
5 must be within distance 2 of xx∗1 and xx∗2

it follows that xy∗5 ∈ E(G). Since G[A] does not contain a path of order 3
(otherwise there is a C4), at least one of y5y12, y5y34 is not an edge. Without
loss of generality, y5y12 /∈ E(G). Then, in order to have y5y

∗
5 within distance

2 of y12y
∗
2 and y12y

∗
1, we must either have y∗5y12 ∈ E(G) (in which case

y∗5xy
∗
2y12 is a C4) or y∗5y

∗
1, y
∗
5y
∗
2 ∈ E(G) (in which case y∗5y

∗
1y12y

∗
2 is a C4).

Contradiction.
Thus we have derived that y12 is the only vertex in Av with two blue

neighbours in B (namely y∗1 and y∗2). Since we assumed eH(Av, B) ≥ 5,
there are three other vertices y3, y4, y5 ∈ Av with unique blue neighbours
y∗3, y

∗
4, y
∗
5 ∈ B, respectively. Since G[A] does not contain a path of order 3,

the complement of the graph induced by Y = {y12, y3, y4, y5} contains a C4.
This implies there is a C4 in the graph induced by {y∗1, y∗2, y∗3, y∗4, y∗5}, the
set of blue neighbours of Y in B. Contradiction.

Thus, we have derived that no vertex in Av has more than one blue
neighbour in B. Now let y1, . . . , y5 ∈ Av be vertices with respective unique
blue neighbours y∗1, . . . , y

∗
5 ∈ B. Since G[A] does not contain a path of

order 3, the complement of the graph induced by {y1, y2, y3, y4, y5} contains
a C4. This implies there is a C4 in the graph induced by {y∗1, y∗2, y∗3, y∗4, y∗5}.
Contradiction.

This concludes our proof that eH(Av, B) ≤ 4. Then together with (2)
and (3), it follows that

e(H) ≤ eH({u}, Au) + |{uv}|+ eH({x}, B) + eH(Av, B) + e(H[A])

≤ 1 + 1 + (∆− 1) + 4 = ∆ + 5 ≤ 3(∆− 1).

Subsubcase 2.1.2. vx ∈ E(G).
Suppose there exists an edge yy∗ ∈ EH(Av, B), with y ∈ Av. Then

the absence of 4-cycles dictates that y is not adjacent to x nor to any of
its blue neighbours in B. Therefore y∗ is adjacent to all blue neighbours
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of x in B, of which there are at least two by assumption. But then these
neighbours form a C4 with x and y∗. Contradiction. So EH(Av, B) = ∅
and therefore all edges of H are incident to the triangle uxv. So e(H) =
e(G[NH(u) ∪NH(x) ∪NH(v)]) ≤ 3(∆− 1).

Subcase 2.2. There is another vertex x2 in Au that has a blue edge to B.
Note that in this case xx2 ∈ E(G), for otherwise there would be a C4

in the graph induced by u, x, x2 and the blue neighbours of x and x2 in B.
Note furthermore that there cannot be a third vertex x3 ∈ Au that has a
blue edge to B, for otherwise the same argument yields xx3 ∈ E(G) so that
x2xx3u would yield a C4.

Subsubcase 2.2.1. vx /∈ E(G).
First, suppose there exists a blue edge vy ∈ EH({v}, A). Then y 6= x (by

assumption) and y 6= x2 and yx /∈ E(G) (for otherwise uvyx is a C4). Since
vy must be within distance 2 of the (blue) edges in EH({x}, B), it follows
that y must be adjacent to both blue neighbours x∗1, x

∗
2 of x in B. But then

xx∗1x
∗
2y forms a C4. Contradiction. So we conclude that EH({v}, A) = ∅.

Second, suppose there is an edge yy∗ ∈ EH(Av, B), with y ∈ Av and y∗ ∈ B.
Let z∗1 , z

∗
2 be two blue neighbours of x in B and let z∗3 be a blue neighbour of

x2 in B. Recall that xx2 ∈ E(G) and, as before, y /∈ {x, x2} and yx, yx2 /∈
E(G). So in order to have yy∗ within distance 2 of xz∗1 , xz

∗
2 and x2z

∗
3 , we

must have for all i ∈ {1, 2, 3} that either y∗z∗i ∈ E(G) or y∗ = z∗i , and y∗

can be equal to only one of the z∗i . If y∗ = z∗3 then xz∗1z
∗
2y
∗ will form a C4.

On the other hand, if (without loss of generality) y∗ = z∗1 , then xy ∗ z∗3x2

forms a C4. Contradiction. We conclude that EH(Av, B) must be empty
too. It follows that all edges of H are incident to the triangle uxx2, so
e(H) ≤ 3(∆− 1).
Subsubcase 2.2.2. vx ∈ E(G).

By the argument of Subsubcase 2.1.2, EH(Av, B) = ∅.
Subsubsubcase 2.2.2.1. EH({v}, Av) 6= ∅.

Let vy ∈ EH({v}, Av) and x2x
∗
2 ∈ EH(Au, B). Since x2y, vx2 /∈ E(G)

(otherwise uvyx2 or uvx2x is a C4), we must have yx∗2 ∈ E(G). This holds
for all such pairs, so in order to prevent a C4, we must have eH({v}, Av) +
eH({x2}, B) ≤ 2. So e(H) ≤ eH({v}, Av)+eH({x2}, B)+|NH(x)∪NH(u)|+
eH(Av, B) ≤ 2 + (2∆ − 1) + 0 = 2∆ + 1. This is bounded from above by
3(∆ − 1) if ∆ ≥ 4, which holds in this subcase because x is adjacent to
u, v, x2 and its two or more neighbours in B.
Subsubsubcase 2.2.2.2. EH({v}, Av) = ∅.

In this case all edges of H are incident to the triangle uxx2, so e(H) ≤
3(∆− 1).
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6 Bipartite and two forbidden cycle lengths

In this section, we prove Theorem 10. Let us begin with the basic reduction
from the {C3, C5}-free to the bipartite setting.

Lemma 22. Let G be a class of {C3, C5}-free graphs that is invariant under
vertex-deletion. Let Gbip be the class of graphs in G that are bipartite. Then,
provided both are well-defined, maxG∈G ω

′
2(G) = maxG∈Gbip ω

′
2(G).

Proof. Clearly, maxG∈Gbip ω
′
2(G) ≤ maxG∈G ω

′
2(G), so it remains to prove

the converse. Given a graph G in G we choose a subgraph H of G whose
edges form a maximum clique in L(G)2 and we choose an edge uv ∈ E(H).
Consider the induced subgraph G∗ := G[N(u)∪N(v)∪N(N [u])∪N(N [v])].
The fact that G is {C3, C5}-free implies that G∗ ∈ Gbip. Since H is a
subgraph of G∗ and moreover all possible edges (in G) between edges of H
are contained in G∗, it follows that ω(L(G∗)2) = e(H) = ω(L(G)2). We
conclude that maxG∈G ω

′
2(G) = maxG∈G ω

′
2(G∗) ≤ maxG∈Gbip ω

′
2(G).

Thus for Theorem 10 it suffices to prove the following result.

Theorem 23. For a {C2k, C2k+2}-free bipartite graph G with ∆G = ∆,
ω′2(G) ≤ max{k∆, 2k(k − 1)}.

Proof. Let G = G[X × Y ] be bipartite and {C2k, C2k+2}-free with ∆G =
∆. By Theorem 5, we may assume throughout that k ≤ ∆. Let H be
a subgraph of G whose edges form a maximum clique in L(G)2, so that
e(H) = ω(L(G)2). A path in G will be called H-sided if it starts and ends
on edges of H. Given a vertex v ∈ V (G), an H-neighbour of v is a vertex
w ∈ NH(v).

Assume that ω(L(G)2) > max{k∆, 2k(k − 1)}. Under this assumption,
we want to derive that for any H-sided path P of order smaller than 2k+ 1,
we can find another H-sided path that has order |P | + 1 or |P | + 2, which
is sufficient by the following claim.

Claim 24. Suppose that for each H-sided path P in G of order |P | < 2k+1,
we can find another H-sided path of order |P |+1 or |P |+2. Then G contains
P2k+1 as a subgraph, and also contains a copy of C2k+2 or C2k.

Proof. Because e(H) ≥ 1, there exists an H-sided path of order 2. We can
iteratively extend the length of this path by 1 or 2, ultimately yielding an
H-sided path P of order in {2k + 1, 2k + 2}. In particular, G contains a
path of order 2k + 1, as desired. The first and final edge of P are in H
and therefore (also using that |P | ≥ 2k + 1 ≥ 5) they must be at distance
exactly 2. Since G is bipartite, this implies the existence of a cycle of order
in {|P |, |P | − 2} if |P | is even, and a cycle of order |P | − 1 if |P | is odd. So
G has a cycle of order in {2k, 2k + 2}. ♦
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Let P be an H-sided path. For clarity of notation we assume from now
on that P has even order 2`, for some ` ≤ k. For paths of odd order < 2k+1
the arguments are similar and in fact slightly easier, because the bounds we
need are slightly more forgiving in that case. Write P = p1p2 . . . p2`.

First, we need to introduce some definitions. Let XP = X ∩ V (P ) =
p1p3 . . . p2`−1 and YP = Y ∩ V (P ) = p2p4 . . . p2` be the two parts of the
bipartite graph induced by P . A vertex of P will be called r-extravert if
its number of H-neighbours outside P is at least r. For short, we call the
vertex extravert if it is 1-extravert. Conversely, a vertex of P is introvert

if all of its H-neighbours are in P . By P
(r)
ex and Pex we denote the set

of r-extravert vertices and extravert vertices respectively, and Pin denotes
the set of introvert vertices. Finally, by Obs(P ) we will denote the set of
obsolete edges, which by definition are those edges of H that are incident to
some vertex of P \ {p1, p2`}. We call them obsolete because they cannot be
‘greedily’ used to extend the order of P .

From now on, suppose for a contradiction that it is not possible to find
an H-sided path of order |P |+ 1 or |P |+ 2. Then the following claims hold.

Claim 25. The first and final vertex of P are introvert.

Proof. Suppose by symmetry that the first vertex p1 is extravert. Then it
has an H-neighbour p0 outside P , so p0P is an H-sided path of order |P |+1.
Contradiction. ♦

Claim 26. |Obs(P )| > max{k∆, 2k(k − 1)}.

Proof. Suppose not. Then |Obs(P )| ≤ max{k∆, 2k(k− 1)} < e(H). There-
fore there exists an edge e∗ in H that is not incident to any vertex of P .
The final edge e of P is in H, so e∗ and e must be at distance exactly 2.
This implies that we can extend P to an H-sided path (ending on e∗ rather
than e) that is of order |P |+ 1 or |P |+ 2. Contradiction. ♦

So in order to arrive at a contradiction, it suffices to show that either
|Obs(P )| ≤ k∆ or |Obs(P )| ≤ 2k(k−1). We will now derive some structural
properties of our counterexample.

Claim 27. Any two extravert vertices in the same part (both in XP or both
in YP ) have a common neighbour outside P .

Proof. Indeed, suppose without loss of generality that pi, pj are two ex-
travert vertices in XP , with H-neighbours qi respectively qj outside P . If
qi = qj we are done, so suppose qi 6= qj . The edges piqi and pjqj need to
be within distance 2. Since odd cycles are not allowed in G, it follows that
pipj , qiqj /∈ E(G), so qi or qj must be a common neighbour of pi and pj . ♦
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Figure 2: A depiction of the contradictory path-extensions described by
Claim 28 (left) and Claim 32 (right). On the right, a and b are non-adjacent
3-extravert vertices and the subpath of P between a and b has order 6. This
means that a and b are too close to each other, with respect to P . Indeed,
by following the green edges (and two blue edges) rather than the red edges,
we obtain an H-sided path of order |P |+ 2.

Claim 28. P contains at most two pairs of consecutive extravert vertices,
and if there are two such pairs pipi+1 and pjpj+1, then they must have
different parity, in the sense that i = j + 1 (mod 2).

Proof. Suppose there are two extravert pairs pipi+1, pjpj+1 of the same
parity. Then without loss of generality i + 1 < j and pi, pj ∈ XP and
pi+1, pj+1 ∈ YP . See Figure 2. By Claim 27, pi and pj have a common
neighbour u ∈ Y \ YP , and pi+1 and pj+1 have a common neighbour v ∈
X \XP . Therefore we can replace the subpath P ∗ = pipi+1 . . . pjpj+1 of P
by piupjpj−1 . . . pi+2pi+1vpj+1, which uses the same vertices as P ∗ and two
extra vertices u, v outside of P . Thus, we have constructed an H-sided path
of order |P |+ 2. Contradiction. ♦

The next claim is arguably the heart of the argument.

Claim 29. There are at most ` extravert vertices.

Proof. Consider the vertex pairs (p2, p3), (p4, p5), . . ., (p2`−2, p2`−1). By
Claim 25, all extravert vertices are contained in the union of these ` − 1
pairs. So if there are more than ` extravert vertices, then by the pigeonhole
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principle at least two pairs entirely consist of extravert vertices. We have ob-
tained two same-parity pairs of consecutive extravert vertices, contradicting
Claim 28. ♦

From now on, let r ≥ 0 be the maximal integer (if it exists) such that
there are nonadjacent r-extravert vertices s, t with s ∈ XP and t ∈ YP .

Claim 30. The integer r is well-defined.

Proof. Suppose r does not exist. Then the vertices of P induce a complete
bipartite graph, with parts XP and YP . By Claim 29 we have |Pex| ≤ `, and
therefore |Obs(P )| ≤ |XP ||YP |+|Pex|(∆−min{|XP |, |YP |}) = `2+`(∆−`) ≤
k∆, contradicting Claim 26. ♦

The next claim follows directly from the definition of r.

Claim 31. The graph induced by P
(r+1)
ex is complete bipartite.

Next, we show that highly extravert vertices of different parity cannot
be too close to eachother with respect to P .

Claim 32. Let q be a positive integer. Let a ∈ XP , b ∈ YP be two non-
adjacent q-extravert vertices. Then the subpath of P having endpoints a and
b has at least 2q + 2 vertices.

Proof. Suppose for a contradiction that the subpath of P with endpoints a
and b has (even) order d ≤ 2q. Let A = {a1, . . . , aq} denote a subset of the
H-neighbours of a in Y \YP . Similarly, let B = {b1, . . . , bq} denote a subset
of the H-neighbours of b in X \XP . See Figure 2. Because ab /∈ E(G) and
the H-edges aia, bjb should be within distance 2 for all i, j, it follows that A
is complete to B. Therefore there exists a path P ∗ = aa1b1a2b2 . . . aqbqb of
order d+ 2 that only intersects P in a and b. This leads to a contradiction,
because it implies that we can construct an H-sided path of order |P | + 2,
by replacing the order d subpath of P between a and b with the order d+ 2
path P ∗. ♦

With the above claims, we now complete the proof of Theorem 23 by
deriving a contradiction to Claim 26.

We partition the vertices of P and estimate the H-edges incident to them

separately. First we need some definitions. Let ix = |P (r+1)
ex ∩XP | and iy =

|P (r+1)
ex ∩YP | be the numbers of (r+1)-extravert vertices in the parts XP , YP

of the bipartite graph induced by P . Similarly, let jx = |Pex \ P (r+1)
ex ∩XP |

and jy = |Pex \P (r+1)
ex ∩YP | be the number of vertices that are extravert but

not (r + 1)-extravert, in part XP respectively YP . Note that the remaining
|XP | − ix − jx (resp. |YP | − iy − jy) vertices in XP (resp. YP ) are introvert.
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An important observation is that we can write Obs(P ) as a disjoint union
E1 ∪ E2 ∪ E3, where

E1 = IH(P (r+1)
ex ), E2 = IH(Pex) \ IH(P (r+1)

ex ), and E3 = E(H[Pin]).

Recall from Claim 31 that G[P
(r+1)
ex ] is complete bipartite, so it is efficient

to estimate |E1| by summing the degrees (with respect to G) of P
(r+1)
ex and

subtracting the double-counted edges of G[P
(r+1)
ex ]. This yields

|E1| ≤ −e(G[P (r+1)
ex ]) +

∑
v∈P (r+1)

ex

|NG(v)| ≤ −ixiy + (ix + iy)∆. (4)

To estimate |E2|, note that it is maximised if each vertex v ∈ Pex \ P (r+1)
ex

has exactly r H-neighbours outside G[P ] and is incident to all vertices of

the opposite part that are not in P
(r+1)
ex (and leaving out one single edge

from this graph, to comply with the non-edge that defines r). In this case

|E2| ≤ −e(H[Pex \ P (r+1)
ex ]) +

∑
v∈Pex\P (r+1)

ex

|NH(v) \ P (r+1)
ex | (5)

≤ −jxjy + jx(r + |YP | − iy) + jy(r + |XP | − ix).

The quantity |E3| is maximised if Pin induces a complete bipartite graph, so

|E3| ≤ (|XP | − ix − jx)(|YP | − iy − jy). (6)

Summing estimates (4), (5) and (6), we conclude that

|Obs(P )| ≤ (ix + iy)∆ + (jx + jy)r + |XP ||YP | − ix|YP | − iy|XP |
= (ix + iy)(∆− `) + (jx + jy)r + `2. (7)

If ∆−` ≥ r then (7) is maximised for jx+jy = 0, so that ix+iy = |Pex|. This
means that all extravert vertices are in fact (r+ 1)-extravert. By Claim 29,

|Obs(P )| ≤ |Pex|(∆− `) + `2 ≤ `(∆− `) + `2 ≤ k∆,

a contradiction to Claim 26. Conversely, if ∆− ` < r then the upper bound
on |Obs(P )| is maximised for ix + iy = 0, so that jx + jy = |Pex|. This
means that none of the extravert vertices is (r+ 1)-extravert. By Claim 29,
we again obtain a contradiction to Claim 26:

|Obs(P )| ≤ |Pex|r + `2 ≤ `(`− 2) + `2 ≤ 2k(k − 1).

In the last line, we used that r ≤ ` − 2, which follows from Claim 32 and
the fact that the first and final vertex of P are introvert.
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