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Abstract

Given a graph G, the strong clique number wh(G) of G is the car-
dinality of a largest collection of edges every pair of which are incident
or connected by an edge in G. We study the strong clique number
of graphs missing some set of cycle lengths. For a graph G of large
enough maximum degree A, we show among other results the follow-
ing: wh(G) < 5A?/4 if G is triangle-free; w)(G) < 3(A — 1) if G is
Cy-free; wh(G) < A% if G is Oyyy1-free for some k > 2. These bounds
are attained by natural extremal examples. Our work extends and
improves upon previous work of Faudree, Gyarfas, Schelp and Tuza
(1990), Mahdian (2000) and Faron and Postle (2019). We are moti-
vated by the corresponding problems for the strong chromatic index.

Keywords: strong clique number, strong chromatic index, forbid-
den cycles.

1 Introduction

A strong edge-colouring of a graph G is a partition of the edges E(G) into
parts each of which induces a matching; the strong chromatic index x45(G) of
G is the least number of parts in such a partition. Although easily defined,
X4 has proven very difficult to analyse: a conjecture of Erdds and Nesetfil [2]
from the 1980s is notorious. (A¢ denotes the maximum degree of G.)

Conjecture 1 ([2]). For a graph G with Ag = A, x5(G) < 2A2%
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If true, this bound would be sharp for even A, by considering a 5-cycle and
substituting each of its vertices with a copy of a stable set of size %A. Molloy
and Reed [9] proved the existence of some absolute constant ¢ > 0 such that
X5(G) < (2—¢)A? for any graph G with Ag = A. Despite significant efforts,
cf. e.g. [1], there is no explicit lower bound on ¢ greater than 0.001 (though
better results hold when A is large).

The problem remains difficult if we restrict to a class defined by some
forbidden set of subgraphs, say, cycles. The following conjecture of Faudree,
Gyérfés, Schelp and Tuza [5] has also remained wide open since the 1980s.

Conjecture 2 ([5]). For a bipartite graph G with Ag = A, x5(G) < A%

Balanced complete bipartite graphs meet the conjectured bound. A more
general assertion due to Mahdian [§] is also open: perhaps it suffices to
forbid just one in particular of the odd cycle lengths rather than all of them.

Conjecture 3 ([§]). For a Cs-free graph G with Ag = A, x4(G) < AZ.

By contrast, the best understood classes are when the forbidden set includes
some bipartite graph. In particular, Mahdian [§] showed the following for Cj.
This was subsequently extended to a similar statement with C4 replaced by
any bipartite H by Vu [II]. See [7] for an explicit derivation with H = Co.

Theorem 4 ([8]). Fize > 0. If G is a Cy-free graph with Ag = A, then,
provided A is large enough, x5(G) < (2 +¢)A?/log A. This is sharp up to
the multiplicative constant factor.

Note that graphs of small maximum degree remain a hypothetical obstruc-
tion to the outright confirmation of Conjectures [1| or [2| for Cy-free graphs.
Based on the above frustrating state of affairs, it is justified to pursue a
simpler parameter than x5, even for restricted graph classes. In particular,
a strong clique of G is a set of edges every pair of which are incident or
connected by an edge in G; the strong clique number wh(G) of G is the size
of a largest such set. No two edges of a strong clique may have the same
colour in a strong edge-colouring, so w5(G) < x5(G). Thus the following
classic result is viewed as supporting evidence towards Conjecture

Theorem 5 ([6]). For a bipartite graph G with Ag = A, wh(G) < A2

By forbidding just one fixed odd cycle length rather than all of them, we
refine and improve upon Theorem [5| as follows.

Theorem 6. Let G be a graph with Aqg = A.
(i) wh(G) < 3A%if G is triangle-free.
(ii) Wh(G) < A? if G is Cs-free.
(iii) wh(GQ) < A% if G is Copy1-free, k > 3, provided A > 3k? + 10k.



The blown-up 5-cycles are triangle-free so Theorem is best possible when
A is even. Parts and of Theorem |§| are sharp for the balanced com-
plete bipartite graphs. They are a common strengthening and generalisation
of Theorem [5| and a result of Mahdian [8, Thm. 15]. Part may be viewed
as support for Conjecture [3| Parts and have a common ingredient,
but curiously the three proofs for Theorem [6] are all quite distinct.

We naturally find it interesting to also consider forbidden cycle lengths
that are even. In this case, we propose the following behaviour.

Conjecture 7. For a Cy-free graph G with Ag = A, wh(G) < (2k—1)(A—
k+1).

If true, this is sharp (for A > 2k — 2) by considering some clique on 2k — 1
vertices, to each vertex of which is attached A — 2k + 2 pendant edges. We
refer to this construction as a hairy clique of order 2k — 1.

In support of Conjecture [/ we have the following three bounds. The
first essentially settles the kK = 2 case. The second is too large by an O(k)
factor. The third is almost the conjectured bound, but with the exclusion
of two more cycle lengths (also absent in the hairy clique of order 2k — 1).

Theorem 8. Let G be a graph with Ag = A.
(1) wh(G) < 3(A —1) if G is Cy-free, provided A > 4.
(i1) Wh(G) < 10k%(A —1) if G is Cop-free, k > 3.
(i1i) Wh(G) < (2k —1)(A —=1)+2 if G is {Cok, Cogt1, Copra}-free, k > 2.

We invite the reader to notice the qualitative difference between exclud-
ing an odd cycle length versus an even one. In the latter case, Theorem
and Theorem [4] combine to reveal an asymptotic difference in extremal be-
haviour between the strong clique number and the strong chromatic index.
In the former case, it is conjectured that there is no such difference.

We have delved a little further by considering the effect of forbidden
(even) cycles within the class of bipartite graphs. For this specific case, we
propose the following.

Conjecture 9. For a Coi-free bipartite graph G with Ag = A, wWh(G) <
E(A—-1)+1.

If true, this is sharp (for A > k — 1) by considering a complete bipartite
graph Kj_1 o with parts of size K — 1 and A, to one vertex in the part of
size A is attached A — k + 1 pendant edges. In support of Conjecture 9] we
have the following result.

Theorem 10. For a {Cs,C5, Coi, Cogi2}-free graph G with Ag = A, wh(G) <
max{kA,2k(k —1)}.



This is nearly sharp by the example mentioned just above. A small step in
the proof is a curious property of maximising the strong clique number: if
we are interested in a class of graphs that are {C3, C5}-free, then we may as
well exclude all other odd cycle lengths at the same time (Lemma . This
same reduction easily implies a result intermediary to Theorems |5l and

Let us remark that in general (i.e. without a cycle restriction) the bound
wh(G) < 2A? remains conjectural. Sleszyriska-Nowak [10] showed a bound
of 3A?, which was improved to 3A? by Faron and Postle [4].

Notational conventions

Let G be a graph or multigraph. V(G) denotes its vertex set. F(G) denotes
its edge set. L(G) denotes its line graph. We write |G| for |V(G)| and e(G)
for |E(G)| = |L(G)|.

Given a subset S C V(G), the sub(multi)graph induced by S is denoted
by G[S]. Given disjoint subsets S1, So C V(G), the bipartite sub(multi)graph
induced by the edges between S; and Sy is denoted by G[S7 x Sa]. We write
Eq(S2,52) for E(G[S1 x S2]) and eq(S2, S2) for e(G[S1 x Sa]). We write
I¢(S) for E(G[S]) U E(G[S x (V(G) \ S)]), the set of edges incident to S.
The neighbourhood Ng(S) of S is the set {v' | v € S,v" ¢ S,vv’ € E(G)} of
neighbours of S. For a vertex v € V(G), we write Ng(v) instead of Ng({v}).
The closed neighbourhood Ng[v] of v is {v} U Ng(v). The degree degq(v)
of v is |Ig({v})| (and so degq(v) = |Ng(v)| if G is a simple graph). When
the context is clear, we sometimes drop the subscript G.

The distance between two vertices is the length of (i.e. the number of
edges in) a shortest path in G that joins them. The distance between two
edges is their distance in L(G). The distance between a vertex and an edge
is the smaller of the distances between the vertex and the endpoints. The
square G? of G is formed from G by adding an edge for every pair of vertices
that are at distance 2. Note w)(G) = w(L(G)?) and x4(G) = x(L(G)?)
where w denotes the clique number and x the chromatic number.

2 No triangles or no 5-cycles

This section is devoted to showing parts and of Theorem @ A
common element of the proof is a lemma about the Ore-degree o of G, the
largest over all edges of G of the sum of the two endpoint degrees. The
following generalises a recent result due to Faron and Postle [4].

Theorem 11. For a Cs-free graph G, wh(G) < 105>

This directly implies Theorem (and hence Theorem because the
sum of two degrees in G is always at most 2Ag. Theorem [11] follows from a
slightly more technical version. For a sub(multi)graph H of a (multi)graph
G, the Ore-degree og(H) of H in G is max,ycpm)(degg(r) + degg(y))-
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Lemma 12. IfG is a C5-free multigraph and H is a submultigraph of G such
that E(H) is a clique in L(G)?, then e(H) < Ap(oc(H)—Ay) < 3o6(H)>2.

Before proving this, we first show how it yields Theorem |6f(z)} (In fact, we
only need the weaker bipartite version due to Faron and Postle [4].)

Proof of Theorem . Let G be a triangle-free graph with Ag = A. Let
H be a vertex-minimal subgraph of G whose edges form a maximum clique
in L(G)?%. Let v € V(G) be a vertex satisfying degy(v) = Ay. From now
on we call H and its edges blue. Let Gr = G[Vr] and Hr = H[Vr], where
Vr =V (H)\ Ng[v].

Let C1,C, ... denote the connected components of Hr that contain at
least one edge. Fix one such component C; and let pg be an edge in C;.
For all x € Ng(v), the blue edges zv and pg must be within distance 2.
They are not incident, so either zp € E(G) or xq € E(G), but we cannot
have both since G is triangle-free. It follows that Ny (v) can be partitioned
into 4; = Ng(p) N Ng(v) and A; = Ng(g) N Ny (v). We will call {A;, 4;}
the partition induced by pq. Now suppose C; contains an edge e which is
incident to pqg. Then since G is triangle-free, e and pg must induce the
same partition. It follows inductively that all edges in C; induce the same
partition {AZ’,E} of Ny (v). Figure |l|illustrates this structure.

Let Ci,...,Ck be the components (if they exist) that induce the trivial
partition {0, Ny (v)}. Let M = |Ci| + --- + |Ck| denote the number of
edges that are in these ‘trivial’ components. On the other hand, let Gy, =
GlUjspe1 V(C)] and Hyyp = H[U;> 4 V(Ci)] be the graphs induced by the
remaining ‘nontrivial’ components.

Claim 13. M < (A — Ap)A.
Claim 14. UGbip (Hbip) S 2A — AH — M/A
Claim 15. Gy, 15 bipartite.

Before proving these claims, we show how they imply the theorem. Note
that E(Hyp) is a clique not only in L(G)? but also in L(Gpip)?. So by
Claim [15] we may apply Lemma [12] and then Claim [14] yielding

M

1 1 2
e(Hbip) < ZO-Gbip(Hbip)Q < Z <2A — Ay — A> .

It follows that w(L(G)?) is at most
e(H) = [Iz(Na(v))| + e(Hr) < Ap degg(v) + M + e(Hyip)

1 M\ 2
<AgA+M+=(2A - Ay — —
< AgA+ +4< H A)

1 M\? 5
=A2+- (A ) < ZA?
+4< H+A> =47



Figure 1: The structure described in the proof of Theorem Blue edges
are in H, red edges are in G but not in H, and black edges could be either.
In this picture, Hyi, € G has two (blue) connected components, induced by
X1 UY] respectively XoUYs. The blue neighbourhood Ny (v) is partitioned
into two sets A (its left two vertices) and A; (the remaining three vertices
on the right), such that X7 is complete to A; and Y7 is complete to A;. The
neighbourhoods of X3 and Y, induce another partition of Ny (v). Not all
edges are depicted here. In particular, we have left out the (possibly red)
edges inside G that ensure that all of its blue edges are within distance 2.



where we used Claim [13]in the last line. This concludes the proof, condi-
tioned on Claims [[3HI5l

Given the ¢th component Cj, let X; respectively Y; denote the set of
vertices in C; whose neighbourhood in N (v) is A; respectively A;. Note

that X; is complete to A; and Y; is complete to A;. Furthermore, the
bipartite subgraph of H induced by C; has parts X; and Y;.

Proof of Claim[13 If C; is a trivial component (1 <4 < k) then Y; is com-
plete to A; = Ny (v). Therefore | J;<,«; Yi| < A, and for the same reason all
Y € Uj<i<p Vi satisfy degyy, (v) < A—Ag. SoM < Zy€U1<¢<kYi degp,.(y) <
A(A = Ap). o &

Proof of Claim[Ij} Let e = pg € E(Hy;p). Then for all z € Ng(v), 2 must
be adjacent to either p or ¢. So there are degy(v) = Ap edges between
{p,q} and Ng(v). Also, pg must be at distance 2 of each of the M edges
induced by the trivial components. So there are at least M /A edges between
{p, ¢} and the trivial components. So at least Ay + M /A edges incident to
{p,q} are not in Ghip. It follows that og, () = degg,, (p) + dege,, (4) <
2A — Ag — M/A.

Proof of Claim[15. Suppose there are two different nontrivial components,
C; and C;. We will first show that we may then assume that either A; C A;
or A; C A;. Indeed, if either /T] CA;or A; C %Tj, then after interchanging
X; and Y; (and thus interchanging A; and A;), we obtain 4; C A; or
A; € Aj. So we may assume for a contradiction that none of A; C A;, A; C
Aj,A; € A;,A; C A; holds. But then there exist a € 4; N Aj,b € 4; N
Aj,c e AN Aj and d € A; N Aij Furthermore, because each component
contains at least one blue edge, there are blue edges (z;,y;) € X; x Y; and
(xzj,yj) € X; x Y; that have to be connected by an edge in order to have
them within distance 2. If z;z; is an edge, then z;x;b forms a triangle.
Similarly, if x;y;, y;y; or x;y; is an edge then x;y;a, y;y;d or z;yc is a
triangle, respectively. Contradiction.

It follows that we can reorder the components by inclusion, so that
Apy1 C© Agpo € ---. Now we are ready to show that Gy, is bipartite
on parts X = ;5541 Xi and Y = ;5,4 Yi- Suppose X is not a stable set.
Then there are x1,z2 € X that form an edge, where z1 € X; and 23 € Xj
for some i < j. Since 0 # A; C A;, there must be a triangle in zjx2A4;.
Contradiction. Similarly, suppose Y is not a stable set. Then there are
y1,y2 € Y that form an edge, where y; € Y; and y2 € Y} for some 7 < j.
Since () # Aij C A;, there must be a triangle in ylyQ/Tj. Contradiction. <

This completes the proof of Theorem |67 )} O



Proof of Lemma[I3 Let G be a Cs-free multigraph and H be a submulti-
graph of G’ whose edges form a maximum clique in L(G)2. Let v € V(G) be
a vertex satisfying degy(v) = Apy.

We may assume that [Ny (v)| > 2. Indeed if [Ny (v)| = 1 then, writing
Ny (v) = {u}, the multiplicity of wv in H is equal to Apy. Each vertex in
Ng({u,v}) is incident to at most Ay edges of H, and there are at most
deggy(u) +degq(v) —2Ap < og(H)—2Ap such vertices. Therefore e(H) <
Apg+ (og(H) — 2A)Ay < Ag(og(H) — Ap), as desired.

Now let E* C E(H) denote the set of those edges st € E(H) for which
s,t ¢ Ng(v). Let st € E*. Then, for all u € Ng(v), vu must be within
distance 2 of st, so either us € E(G) or ut € E(G). Without loss of gene-
rality, us € E(G). Because G has no C5 and |Ng(v)| > 2, it follows that ¢
is anticomplete to Ng(v) \ {u}, so in fact s is complete to Ny (v) and ¢ is
anticomplete to Ny (v). We derived this for all st € E*, so there exists a
subset S € V(H) such that

(1) E* CIy(S), and
(73) S is complete to Ny (v).

Since each edge of H is either in E* (and thus has an endpoint in S) or
has an endpoint in Ng(v), we can cover E(H) with the following subsets:

Es=1Iy(S), By =Ig(Ng(v)\ Ng(v)), and Es = Iy(Ng(v)) \ Es.

Each vertex is incident to at most Ay edges of H, so |Eg| < Ag|S|. Further-
more, |F1| < Ag|Ng(v) \ Ng(v)| < Ag(degs(v) — Ap) by our choice of v.
By property [(ii)] each vertex z € Ny (v) is incident to at most degq(z) —|9|
edges that are not incident to S. Thus, |Ea| < 37 cn, (1) (dega(@) — [S]) <
Ap(og(H) — degg(v) —|S|). In conclusion,

e(H) < |Es| + |Er| + [E2| < An(oc(H) — Ag).
The last expression is largest if Ay = $o¢(H), so e(H) < Loq(H)?. O

3 No (2k + 1)-cycles or no 2k-cycles

In this section, we prove Theorem and Theorem The methods
are quite different from those of the previous section. In both proofs, we
utilise a Turan-type lemma for graphs with no path Psxiq1 of order 2k + 1
as a subgraph.

Given a graph G and a subset S C V(G), an edge uv out of S, with
u € S and v ¢ S, say, is called b-branching out of S if |[Ng(v) NS| > b.

Lemma 16. Fiz k > 2. Given a graph G and a subset X C V(G), if
G[X x (V(G)\ X)] is Popy1-free, then at most k| X| edges are k-branching
out of X.



Proof. Let G and X C V(G) satisfy the hypothesis. Without loss of genera-
lity, we may assume that G is connected. We prove the result by induction
on |X|. The statement is trivially true if |X| < k. For the induction, let us
assume that | X| > k(> 2) and that the statement is true for any X’ C V(G)
with | X'| < |X].

Suppose there is some x € X that is incident to at most k edges that are
k-branching. We then have by induction that there are at most k%(|X|— 1)
edges that are k-branching out of X \ {z}. Let us call a vertex v ¢ X pivotal
if there exists an edge incident to v which is k-branching out of X but not
k-branching out of X \ {}. Each pivotal vertex must be adjacent to = and
must have exactly k£ — 1 neighbours in X \ {z}. It follows that there are at
most k pivotal vertices, each of which is incident to exactly k edges that are
k-branching out of X (but not k-branching out of X \ {z}). In conclusion,
at most k2(|X| — 1) + k? = k?|X| edges are k-branching out of X.

There remains the possibility that every vertex of X is incident to at least
k 4+ 1 edges that are k-branching. In this case, however, we can construct
a path through the following iterative process. Consider an arbitrary k-
branching edge out of X and let z; be its endpoint in V(G)\X. Suppose
we have constructed a path z{xq---2,_,z;_12} for some i > 0, such that

x, is incident to an edge which is k-branching out of X. Note that z

K]
has at least k£ neighbours in X by definition. If ¢ < k, we may choose
x; € X \ {zo,...,2;—1}. Subsequently, we may choose a k-branching edge
z;x;,, such that 2}, € V(G)\ (X U{xg, ..., 2;}). This process certifies that

zoxo - - - o), is in G[X x (V(G) \ X)]. This path is of order 2k 4 1, contrary
to our assumption. ]

In addition to Lemma [I6, we need a basic bound on the Turdn number
of a path Py; of order £+ 1 due to Erdds and Gallai [3].

Lemma 17 ([3]). For a Pyyi-free graph G, e(G) < (£ —1)|G|/2.

Proof of Theorem . Let G be a Cyp11-free graph with Ag = A > 16k.
Let H be a subgraph of G whose edges form a maximum clique in L(G)?.
Thus bounding w(L(G)?) is equivalent to bounding e(H). Let v € V(G)
be a vertex satisfying degy(v) = Ap. For short, we write A, = Ng(v)
and B, = Ng(Ng[v]). Note that if E(H[B,]) = 0, then every edge in H is
incident to A,, and e(H) < degg(v)A < A2

For any edge xy € E(H|[B,]), it must hold that Ng(v) C Ng({z,y}).
If, for every such edge, it holds that Ng(z) N Ngy(v) = 0, say, (and so
Ny (v) € Ng(y),) then e(H) < dega(v)Ap + A(A — Ap) < A2

Fix zy € E(H|[B,]) such that Ng(x)NNg(v) # 0 and Ng(y)N"Ng(v) # 0.
Let {X,Y} be a non-trivial partition of Ng(v) such that X C Ng(z) and
Y C N¢(y). We will need the following claim.

Claim 18. (i) G[Ay] is Poy-free.



(i) GIX x (By \ {z,y})] and G[Y x (B, \ {z,y})] are Poj_-free.

Proof. (i) If G[A,] contains a path P of order 2k, then the concatenation
of P with v is a cycle of order 2k + 1 in G, a contradiction.

(73) If G[X x (B, \ {z,y})] (say) contains a path of order 2k — 1, then there
must be a subpath P of order 2k — 3 such that both its endpoints are in X.
Now for any b € Y, the concatenation of P with the path vbyz is a cycle of
length 2k + 1 in G, a contradiction. O

Letting C denote the set of (2k — 3)-branching edges out of Ny (v) with
respect to the graph G[Ng(v) x (By \ {z,y})], note that the edges of H can
be covered by the following six sets:

In({v,z,y}), Ia(Ne(v)\ Nu(v)), E(H[A)),
C, En(Ng(v), By \{z,y})\C, E(H[B,\{z,y}]).

We have [Ig({v,z,y})| < 3Ayg — 1 and |Ig(Ng(v) \ Ng(v))| < (A —
Ap)Aq. Also, e(H[A,]) < (k —1)A by Lemma [I7 and Claim [1§(z)]

Let C,, (resp. Cy) be the set of (k—1)-branching edges out of X (resp. Y')
with respect to the graph G[X x (B, \{z,y})] (resp. G[Y x (B, \{z,y})]). By
Lemma[16/and Claim [1§(i)] |Cy| < (k —1)?|X| and |Cy| < (k—1)?|Y]. By
the pigeonhole principle, for every set of edges of C' incident to a single vertex
in By \ {z,y}, more than half of them belong to C; or to Cy. Thus |C| <
2((k—1)2|X|+(k—1)2]Y]) = 2(k—1)2Ay. We next bound |Ey (Ng(v), By \
{z,y})\ Cl.

Supposing that there are edges in Egy(Ng(v), B, \ {z,y}) \ C, let A’ be
the set of vertices in Ny (v) that are incident to such an edge and let u € A’
be a vertex of minimum degree in H[A']. Note that deg(u) < 2(k — 1)
by Lemma (17| and Claim Let uvw € Eg(Ng(v), By \ {z,y}) be an
edge that is not (2k — 3)-branching out of Ny (v). By crudely bounding the
number of edges that are within distance 2 of uw and not (2k—3)-branching,
we have that

|Er (N (v), By \ {z,y}) \ C|

< [Na(u) N (Bo \ {z,y})| - (2k — 4) + [Ne(w) N (By \ {z,y})] - (2k — 4)
+ |Na(u) N A'|- A+ ([Ng(w) N A'| —1) - A

< A2k —4)+ A2k —4) +2(k — )A + (2k — 5)A

= (8k — 15)A.

It only remains to bound the number of edges of H[B, \ {z,y}]. First
observe that we may assume degy (v) = Ay > 4k — 6, for otherwise e(H) <
INg[{u,w}]|Ag < 2(4k — 6)A (which is at most A? if A > 16k). Let
z'y’ be an edge of H[B, \ {x,y}]. Write d,» for [Ng(z') N Ng(v)| and d,y
for [N¢(y') N Ng(v)|. As we have already observed earlier, Ng({z/,vy'}) 2
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Ng(v), and so dy + dyy > Ag. If both dpy > 2k — 3 and dyy > 2k — 3, then
the number of edges of C incident to {z’,y'} is at least dyy + dyy > Ag,
and so one of 2’ or 3/, say v/, is incident to at least Ay /2 edges of C.
Otherwise, d,y < 2k — 4 (say) and so dy > Ay — 2k +4 > Ap/2, in which
case ¢/ is incident to at least Ap /2 edges of C. In either case, the number
of edges of H[B, \ {z,y}] incident to ¢ is at most A — Ap /2. Since z'y/
was arbitrary, what we have shown is that H[B, \ {z,y}] admits a vertex
cover each member of which is incident to at least Ap /2 edges of C' and to
at most A — Ay /2 edges of H[B, \ {x,y}]. The size of this vertex cover is at
most |C| divided by Ag /2. It then follows, using our earlier derived bound
on |C|, that

2(k —1)A
e(H[B,\ {y}) < ===

=2(k—1)(2A — Ap).

(A—Ap/2)

Summing all of the above estimates, we deduce that the number of edges
in H is at most

3Ag =14+ (A —-Ag)Ap +(k—1)A
+2(k —1)2Ag + (8k — 15)A +2(k — 1)(2A — Ap)

1
< ZAZ + (2K* + Tk — 13)A,

which is at most AZ if A > 3k2 + 10k. O

Proof of Theorem . Let G be a Coi-free graph with Ag = A. Let H
be a subgraph of G whose edges form a maximum clique in L(G)2. Choose
an edge uwv € E(H), and define A, = Ng(u) \ {v} and A, = Ng(v) \ Ng[u].
For short we will write A = A, U A, for the neighbourhood of {u, v} and we
also need the second-order neighbourhood B = Ng(A) \ (AU {u,v}). Note
that |A] < 2A —2.

Letting C denote the set of (2k — 1)-branching edges out of AU {u,v},
note that the edges of H can be covered by the following four sets:

Iy({u,v}), E(H[4]), C, En(A,B)\C.
Claim 19. (i) G[A] is Pyj_1-free.
(17) G[Ay x B] and G[A, x B] are Pyjy1-free.

Proof. (i) Suppose that there is a path xg - - - 952 of order 2k—1 in G[A4, U
Ay]. Without loss of generality assume that xo € A,. Then x5 ¢ A, or
else uxg - - - xop_3v would be a cycle of length 2k in G, a contradiction. So
Top_3 € Ay. Also zop_o9 € A, or else uxg---xor_o would be a cycle of
length 2k. Then x1 € A, or else uxy - - - rop_ov would be a cycle of length
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2k. Now take the least i such that xo;_1 € A, and x9;41 € A,. Since
x1 € A, and mg_3 € Ay, such an i € [2k — 2] exists. But this implies that
UTQ -+ + T2i—1VTok—9 - - T2+1 1S a cycle of length 2k, a contradiction.

(74) In any path of order 2k + 1 in G[A,, x B|, say, there is a path of order
2k — 1 with both of its endpoints in A,. This path together with u forms a
(5 in G, a contradiction. &

Note that |[Iy({u,v})] < 2A — 1. By Lemma and Claim
e(H[A]) < (k—1)|A|. Let C,, (resp. Cy) be the set of k-branching edges out
of A,U{u} (resp. A,U{v}) with respect to the graph G[A,UV (G)\ (A,U{v})]
(resp. G[A, UV(G) \ (A, U{u})]). By Lemma [16| and Claim [19(i2)] |Cy| <
k% A,| and |C,| < k?|A,|. By the pigeonhole principle, for every set of edges
of C incident to a single vertex in B, more than half of them belong to C,
or to Cp. Thus |C| < 2(k?|Ay| + k?|A,|) = 2k%|A|. Tt remains to bound
En(A,B)\ Cl.

Assuming that Eg (A, B)\ C # 0, let A’ C A be the set of those vertices
in A that are incident to some edge of Fr(A,B)\ C and let z € A’ be
a vertex of minimum degree in H[A']. Note that degpa(7) < 2k — 3 by
Lemma [17)and Claim [I9(é)} Let zy € E(H) be an edge that is not (2k — 1)-
branching out of AU {u,v}. By crudely bounding the number of edges that
are within distance 2 of zy and not (2k — 1)-branching, we have that

|Er (A, B)\ C| <|Na(x) N B[ - (2k = 2) + [Na(y) N Bl - (2k - 2)
+ [No(@) N A'l- A+ (INa(y) N A1) - A
<Ak —2)+ A2k —2) + (2k —3)A+ (2k - 3)A
= (8k — 10)A.
Combined with the previous estimates and using that A > 3 (otherwise

G is a collection of vertex-disjoint paths and cycles, so the theorem follows
straightforwardly), we obtain

e(H) <2A — 1+ (2k* + k — 1)|A| + (8k — 10)A

<
< (4K* 4 10k — 10)A +1 — 2k — 2k? < (5K* + 14k)(A —1). O

4 No three consecutive cycle lengths

In this section, we prove a stronger version of Theorem
Theorem 20. Let G be a graph with Ag = A.

(i) w(L(G)?) < (k—2)(A—1)+2 if G is Pey1-free, k > 3.

(i) w(L(G)?) < (U —2)(A—=1)+2if G is {Cy_1,Cy,Coy1}-free, £ > 5.
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Proof of Theorem[20. If A = 1 then w(L(G)?) = 1. If A = 2, then G is
a path or a cycle, or a vertex-disjoint union of such graphs. For all such
graphs, w(L(G)?) <5 < ((—2)(A—1)+2. Furthermore, if G is not a 4-cycle
or 5-cycle then w(L(G)?) < 3, so w(L(G)?) < (k —2)(A — 1) + 2. Thus we
may assume from now on that A > 3. The idea of the proof is to assume
that w(L(G)?) is large and then iteratively construct a path of order [ + 1
(respectively k 4 1) whose extremal edges are in E(H ). This will imply the
existence of a cycle (respectively path) of forbidden length; contradiction.

Let H be a subgraph of G whose edges form a maximum clique in L(G)2.
Note that e(H) = w(L(G)?) > A, for otherwise the conclusion of the the-
orem is already satisfied. It follows that G contains a path Py = x1y122y2
that starts and ends on edges x1y1, zoy2 from E(H). Indeed, let e; and ey
be edges of F(H). If they are not incident to each other, then there must
be an edge between them and we have obtained the desired Py. So we may
assume that all edges of E(H) are pairwise incident and in particular we
can write e; = xy and ey = yz. At most A edges meet in y, so E(H)
contains an edge ez that is not incident to y and therefore es is incident to
z. If es = zq # xz then qryz forms the desired Py. Otherwise ryz forms
a triangle of edges from FE(H). Since e(H) > A + 1 > 4, there is a fourth
edge in F(H) incident to the triangle, again yielding a Pj.

We now define the paths W := yixo and W7 := x1y122y2, the latter
being the P, whose existence we derived above. These paths serve as the
initialisation step of a construction (described below). The input of this
construction is given by a path W, := yi1x2y2...y;—1x; and a ‘preliminary’
path W) := x1W,y;, with the property that the first and final edge of W
are in E(H). The output consists of longer paths Wi 1 and Wy, with
the same properties. For this construction to work, we need the edge set
F,:=FE(H)\ (Ig(W;) U{x1y;}) to be nonempty.

As long as F; is nonempty, we iterate the following case consideration.

Case 1. F; contains an edge which is incident to the first vertex x1 or the
last vertex y; of W}.

Choose such an edge e;+1 € F; and assume without loss of generality
that it is incident to y;. Then we add e;4; to our preliminary path, and we
set W = Wieip1 and Wiy = W, By the definition of Fj, y; is the only
vertex in W;* that is incident to e;11, so W' ;| is a path as well.

Case 2. Case[]] does not apply.

Then F; contains an edge z;41¥y;+1 which is not incident to x; or y;. By
the definition of Fj, x;+1y;+1 is not incident to z; either. Therefore there
must be an edge e* between z;11y;+1 and x;y;. Without loss of generality,
e* is incident to x; 41, so we have z;z;11 € E(G) or y;zit1 € E(G).

Subcase 2.1. x;z;41 € E(G).
Then we set W/ | = Wiz 1y;41 and Wiy = Wixiq.
Subcase 2.2. y;x;1 € E(G) and subcase does not apply.

13



*

Then we set i+1 = Wiyil'i+1yi+1 = VVZ-*ZL'Z'+1yi+1 and Wi+1 = Wiyixiﬂ.

After the final iteration I, the set Fy is empty. Since F; = E(H) \
(Ig(Wr) U {z1yr}) and because the number of edges incident to Wy is at
most (A — 1)|W;| + 1, it follows that 0 = |F7| > e(H) — 2 — (A — 1)|W7].

Because G is P, y1-free, our constructed path W cannot be too large.
More precisely, we must have x > |W}| = |W;| + 2, and therefore

WL(G)Y) =e(H) < (A-1)|Wi|+2<(A-1)(k—2)+2.

This concludes the proof of For we extend the argument slightly.
Suppose for a contradiction that w(L(G)?) = e(H) > (£ — 2)(A — 1) + 3.
Then W7 is a path on |[Wr|+2 > % +2>0+ ﬁ vertices. Note that
in the 7th iteration, the order of the path W is increased by either 1 or 2[|
Therefore there exists a j < I such that [W}| € {{,{+1}.

From now on, let us call the edges of E(H) blue and the other edges of
E(G) red. First we derive that it suffices to show the existence of a Py that
starts and ends on blue edges. Suppose G has a path A of order £+ 1 > 6
that starts with a blue edge ajas and ends on another blue edge agast1.
These (nonincident) blue edges must be within distance 2, so there must
be an edge between them that is not part of A. If ajapy1 € E(G), then
ajaz...aps1 is a Cppq. Similarly, if ajap € E(G) or asaprq € E(G), then
there is a Cy. Finally, if asay € E(G), then there is a Cy_1. So G contains
a cycle of order £ — 1, £ or £ + 1; contradiction.

So we may assume that [W}| = £ and [W7, | = £+2. To finish the proof,
we will derive that G then contains another path of order £+ 1, starting and
ending on blue edges.

Write W = wy ... wp. First, since [Wr | — [W7| = 2, we must have
that ;+1 = W]?“wg+1wg+2, where wywyy1 is a red edge and wyjwpso is
blue. Second, since wjwy and wyiiweso are at distance 2, there is an edge
e* between them. From this observation, we obtain the desired P41 unless
e* = wiwpys. Third, wiws and wy_jwe must be at distance 2 from each
other, so they are connected by an edge e™ that is not part of W;. This
yields a forbidden Cy or Cy_1, unless e** = wowy_1. Fourth, note that
wy_swy_1 is red, for otherwise wyywpswiws ... wy_swp_1 would yield the
desired Pyq.

In summary, we have obtained the cycle I' = wi41 ... w42, where wyws,
wy_jwp and wyyqwypyso are blue, and wy_swy_1 is red. Furthermore, it holds
that wowy_1 € E(G).

Next, we are going to focus on the edge e*** = wy_3wy_o. Since £ > 5,
this edge is different from the first edge wywy. Suppose that e*** is blue.

Then wy_owp_3 ... wowy_1wewps1wero forms a Py starting and ending
on blue edges. Suppose on the other hand that e*** is red. Because e***

HWiq| — Wi is equal to one in case[l| and subcase and equal to two in subcase
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and wy_swy_1 are consecutive red edges of W]*H, it follows from the con-
struction of the paths (W;")1<i<j+1 that there must be a pendant blue edge
wy_owy that is only incident to I' in the vertex wy_s. (This pendant edge
used to be the blue end-edge of some preliminary path W7, i < j.) Now
WpWy—Wp—3 . .. Wow 1 Wer2Wer1 forms a Ppyq, starting and ending on blue

edges. O

5 No 4-cycles

In this section we prove Theorem We proceed by a case analysis. In
Subsubcases 2.1.2] and 2.2.7] and Subsubsubcase 2.2.2.21 we can reduce to
the case of the neighbourhood of a triangle, which constitutes exactly the
extremal hairy triangle. In the other situations, we derive bounds that are
smaller, at most 2A in particular.

Proof of Theorem . Let G be a Cy-free graph with Ag = A > 4. Let
H be a blue subgraph of G’ whose edges form a maximum clique in L(G)2.
Thus bounding w(L(G)?) is equivalent to bounding e(H). Choose an edge
wv € E(H), and define A, = Ng(u) \ {v} and A, = Ng(v) \ Nglu]. For
short we will write A = A, U A, for the neighbourhood of {u, v} and we also
need the second-order neighbourhood B = Ng(A) \ (AU {u,v}).

Note that the edges of H can be partitioned into the following six sets:

EH({U}ﬂA)a EH({U}ﬂA)a EH(A’LHB)? EH(AvaB)7 E(H[A])7 {uv}

We will use the following claim a few times.

Claim 21. e¢(H[A4]) < 1.

Proof. If not, then G[A] must contain a path of order three, which forms a
Cy with w and/or v. &

We now start the case analysis.

Case 1. No vertex in A has two blue neighbours in B.

The first thing to notice is that A, and A, each contain at most three ver-
tices with a blue edge to B. Indeed, if there are four such vertices x1, ..., x4
with blue neighbours y1,...,ys € B respectively, then the (y;)1<i<4 must
be pairwise distinct to prevent a C4. Therefore the blue edges (z;yi)1<i<a
are pairwise at distance exactly 2. There can be at most two edges in
G[{z1,x2,x3,24}] and these must be nonincident, for otherwise they form a
Cy with v. Say these edges are x1x9 and z3x4 (or a subset thereof). Then
Y1Y2y2y4 is a Cy, contradiction. Second, it cannot be that both eg ({v}, A) >
2 and e (Ay, B) > 2. Indeed, otherwise there are two vertices in Ny (v) that
must be complete to two vertices in B N Ny (A,), thus forming a Cy, con-
tradiction. So eg({v}, A) + em(Ay, B) < A (where here we also used our
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assumption that A > 4). And similarly eg({u}, A) + ex(A,, B) < A. It
follows that e(H) is at most

eg({v}, A) +en(Ay, B) + eg({u}, A) + eq(Ay, B) + e(H[A]) + [{uv}]
<SA+A+1+1=2A+2. (1)

This is bounded from above by 3(A —1) if A > 5. To conclude the same for
the case A = 4, we need to reduce the bound in equation by 1.

If e(H[A]) = 0, then we get the desired improvement for free. If, on
the other hand, E(H[A]) is nonempty, then its unique edge ab has both
endpoints in either N(u) \ N(v) or in N(v) \ N(u), (otherwise abuv would
form a Cy). Without loss of generality, assume ab is induced by N (u)\ N (v).
In that case it follows that Ex({v}, A) = 0 (or otherwise a blue neighbour
of v in A would have to be adjacent to a or b, forming a Cj.)

But then ey ({v}, A) +en(Ay, B) <04+ A —1, so we have again reduced
the upper bound in by 1, as desired.

Case 2. At least one vertex in A has two blue edges to B.

Without loss of generality, let * € A, be such a vertex and let =7, z}

denote two of its blue neighbours in B.

Subcase 2.1. z is the only vertex in A, that has a blue edge to B.
Subsubcase 2.1.1. vz ¢ E(G).

Suppose there exists vy € Eg({v}, Ay). Then y # x because vz ¢ E(G).
Also, yxr ¢ E(G) because otherwise uvyx would be a Cy. So y must be
adjacent to the two blue neighbours z7, x5 of z in B, in order to have vy
within distance 2 of zz] and xx3. But then zzjxiy forms a Cy. We deduce

En({v}, Ay) = 0. (2)

We now show that it is impossible for both eg ({u}, A,) > 2 and ey (A,, B) >
1 to hold. Indeed, suppose there are xi,z2 € Epg({u}, A,) and a blue
neighbour y* € B of some y € A,. Since uy, uy*, x1y, xoy ¢ E(G) while yy*
must be within distance 2 of both uxo and uxy, it follows that y*x1,y*zo €
E(G), yielding the 4-cycle uzizoy*. Contradiction.

If eg(Ay, B) =0 then e(H) < |Ng(u) UNg(z)| +e(H[A]) < (2A-1)+
1 < 3(A —1), as desired. So we may from now on assume that

eg({u}, Ay) < 1. (3)

Next, we want to show that eg(A,, B) < 4. Suppose for a contradiction
that CH(Av,B) > 9.

Suppose first that there exists y € A, with (at least) three blue neigh-
bours y7,y5,y5 in B. Recall that z7,25 € B are two blue neighbours of
x. Since {z7,x3} has at most one element in common with {yj,v5,vs}
(otherwise there is a C4) we may without loss of generality assume that

16



{e1, 25} N {yi, y3} = 0. If 2yf, 2y3, 927, yo3 ¢ E(G), then {r], 25} must
be complete to {y},y5}, yielding a Cy. So without loss of generality zyj €
E(G). This implies zy;, yx],yxs ¢ E(G) (otherwise there is a C4 containing
x and y). So in order to have yy; within distance 2 of zz} and zx%, we must
have ziys,z3y5 € E(G), yielding zajys23 as a Cy. Contradiction. So we
have derived that each y € A, has at most two blue neighbours in B.

Now suppose that some vertex yi2 € A, has two blue neighbours vy, y5
in B. By the argument in the previous paragraph, it may not be that
Hzy, 23} N {yy, y5}| € {0,2}, so without loss of generality =5 = y3.

Additionally suppose there is another vertex ys4 € A, with two blue
neighbours y3,y; in B. By the same argument, one of {y3,y;} is equal to
one of {z7,25}. But o5 = y5 ¢ {y3,yi} (otherwise there is a C4 containing
ys and v), so without loss of generality y; = x]. Since we assumed that
er(Ay, B) > 5, there is yet another vertex ys € A, with (at least) one
neighbour y; € B. Since ysy: must be within distance 2 of zz] and xx3
it follows that zyf € E(G). Since G[A] does not contain a path of order 3
(otherwise there is a Cy), at least one of y5y12, Y534 is not an edge. Without
loss of generality, ysy12 ¢ E(G). Then, in order to have ysyZ within distance
2 of yioy5 and y12y;, we must either have yiy12 € E(G) (in which case
yrzysyi2 is a Cy) or yiyf,yiys € E(G) (in which case yZyjyi2ys is a Cy).
Contradiction.

Thus we have derived that yio is the only vertex in A, with two blue
neighbours in B (namely y; and y3). Since we assumed ep(A4,,B) > 5,
there are three other vertices ys3,v4,y5 € A, with unique blue neighbours
Y5, Y1, Y € B, respectively. Since G[A] does not contain a path of order 3,
the complement of the graph induced by Y = {y12,y3, y4,y5} contains a Cj.
This implies there is a Cy in the graph induced by {vi,v5,v3,v1, 9}, the
set of blue neighbours of Y in B. Contradiction.

Thus, we have derived that no vertex in A, has more than one blue
neighbour in B. Now let y1,...,ys € A, be vertices with respective unique
blue neighbours y7,...,yt € B. Since G[A] does not contain a path of
order 3, the complement of the graph induced by {y1, y2, y3, ¥4, y5} contains
a Cy. This implies there is a Cy in the graph induced by {v7,vs,v4, v, v2 }-
Contradiction.

This concludes our proof that ey (A,, B) < 4. Then together with
and , it follows that

e(H) <eg({u}, Ay) + [{uv}| + eg({z}, B) + ey (Ay, B) + e(H[A])
<1+14+(A-1)+4=A+5<3(A-1).

Subsubcase 2.1.2. vz € E(G).

Suppose there exists an edge yy* € Eg(A,, B), with y € A,. Then
the absence of 4-cycles dictates that y is not adjacent to x nor to any of
its blue neighbours in B. Therefore y* is adjacent to all blue neighbours
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of z in B, of which there are at least two by assumption. But then these
neighbours form a Cy with x and y*. Contradiction. So Epy(A4,,B) = 0
and therefore all edges of H are incident to the triangle uzv. So e(H) =
e(G[NH(u) U NH(x) U NH(’U)]) < 3(A — 1).
Subcase 2.2. There is another vertex xo in A, that has a blue edge to B.
Note that in this case xxe € E(G), for otherwise there would be a Cy
in the graph induced by u, x, zo and the blue neighbours of x and z2 in B.
Note furthermore that there cannot be a third vertex x3 € A, that has a
blue edge to B, for otherwise the same argument yields zzs € E(G) so that
roxxsu would yield a Cy.

Subsubcase 2.2.1. vz ¢ E(G).

First, suppose there exists a blue edge vy € Ef({v}, A). Then y # = (by
assumption) and y # x9 and yx ¢ E(G) (for otherwise uvyx is a Cy). Since
vy must be within distance 2 of the (blue) edges in Ey({z}, B), it follows
that y must be adjacent to both blue neighbours z7, x5 of z in B. But then
zaizy forms a Cy. Contradiction. So we conclude that Eg({v}, A) = 0.
Second, suppose there is an edge yy* € Ef(A,, B), with y € A, and y* € B.
Let 27, 25 be two blue neighbours of « in B and let 23 be a blue neighbour of
x2 in B. Recall that zxs € E(G) and, as before, y ¢ {z,z2} and yz,yzs ¢
E(G). So in order to have yy* within distance 2 of 2], zz5 and 223, we
must have for all i € {1,2,3} that either y*2F € E(G) or y* = 2/, and y*
can be equal to only one of the 2. If y* = 23 then zz{z3y"* will form a Cj.
On the other hand, if (without loss of generality) y* = 2], then zy * 25z
forms a C4. Contradiction. We conclude that Ep(A,, B) must be empty
too. It follows that all edges of H are incident to the triangle uxzs, so
e(H) <3(A-1).

Subsubcase 2.2.2. vz € E(G).
By the argument of Subsubcase Ey(A,, B) = 0.

Subsubsubcase 2.2.2.1. Ey({v}, A,) # 0.

Let vy € Eg({v}, Ay) and zoay € Ep(Ay, B). Since xoy,vze ¢ E(G)
(otherwise uvyzs or uvxex is a Cy), we must have yzy € E(G). This holds
for all such pairs, so in order to prevent a Cy, we must have ey ({v}, A,) +
GH({SUQ}, B) < 2. So G(H) < GH({U}, AU)+6H({:L‘2}, B)-l— |NH($)UNH(U)|+
en(Ay,B) <2+ (2A —1) 4+ 0 = 2A + 1. This is bounded from above by
3(A —1) if A > 4, which holds in this subcase because x is adjacent to
u, v, z9 and its two or more neighbours in B.

Subsubsubcase 2.2.2.2. Ey({v}, A,) = 0.

In this case all edges of H are incident to the triangle uzxs, so e(H) <

3(A —1). 0
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6 Bipartite and two forbidden cycle lengths

In this section, we prove Theorem Let us begin with the basic reduction
from the {Cs5, Cs}-free to the bipartite setting.

Lemma 22. Let G be a class of {Cs, Cs}-free graphs that is invariant under
vertex-deletion. Let Gy, be the class of graphs in G that are bipartite. Then,
provided both are well-defined, maxgeg wy(G) = maxgeg,,, wy(G).

Proof. Clearly, maxgeg,;, w5(G) < maxgeg wy(G), so it remains to prove
the converse. Given a graph G in G we choose a subgraph H of G whose
edges form a maximum clique in L(G)? and we choose an edge uv € E(H).
Consider the induced subgraph G* := G[N (u) UN (v) UN (N [u]) UN (N v])].
The fact that G is {Cs, C5}-free implies that G* € Gpip. Since H is a
subgraph of G* and moreover all possible edges (in G) between edges of H
are contained in G*, it follows that w(L(G*)?) = e(H) = w(L(G)?). We
conclude that maxgeg wy(G) = maxgeg wy(G*) < maxgeg,,, wy(G). O

Thus for Theorem [10] it suffices to prove the following result.

Theorem 23. For a {Co, Copia}-free bipartite graph G with Ag = A,
wh(G) < max{kA,2k(k —1)}.

Proof. Let G = G[X x Y] be bipartite and {Ca, Cokyo}-free with Ag =
A. By Theorem [, we may assume throughout that & < A. Let H be
a subgraph of G whose edges form a maximum clique in L(G)?, so that
e(H) = w(L(G)?). A path in G will be called H-sided if it starts and ends
on edges of H. Given a vertex v € V(G), an H-neighbour of v is a vertex
w € Ny (v).

Assume that w(L(G)?) > max{kA,2k(k — 1)}. Under this assumption,
we want to derive that for any H-sided path P of order smaller than 2k + 1,
we can find another H-sided path that has order |P|+ 1 or |P| + 2, which
is sufficient by the following claim.

Claim 24. Suppose that for each H-sided path P in G of order |P| < 2k+1,
we can find another H-sided path of order |P|+1 or |P|+2. Then G contains
Popy1 as a subgraph, and also contains a copy of Cox4o or Coy.

Proof. Because e(H) > 1, there exists an H-sided path of order 2. We can
iteratively extend the length of this path by 1 or 2, ultimately yielding an
H-sided path P of order in {2k 4+ 1,2k + 2}. In particular, G contains a
path of order 2k + 1, as desired. The first and final edge of P are in H
and therefore (also using that |P| > 2k + 1 > 5) they must be at distance
exactly 2. Since G is bipartite, this implies the existence of a cycle of order
in {|P|,|P| — 2} if | P| is even, and a cycle of order |P| — 1 if |P| is odd. So
G has a cycle of order in {2k, 2k + 2}. O
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Let P be an H-sided path. For clarity of notation we assume from now
on that P has even order 2/, for some ¢ < k. For paths of odd order < 2k+1
the arguments are similar and in fact slightly easier, because the bounds we
need are slightly more forgiving in that case. Write P = pips ... pay.

First, we need to introduce some definitions. Let Xp = X N V(P) =
p1ps.--por—1 and Yp = Y N V(P) = popy...pae be the two parts of the
bipartite graph induced by P. A vertex of P will be called r-extravert if
its number of H-neighbours outside P is at least r. For short, we call the
vertex extravert if it is l-extravert. Conversely, a vertex of P is introvert
if all of its H-neighbours are in P. By Pe(,f) and P we denote the set
of r-extravert vertices and extravert vertices respectively, and P, denotes
the set of introvert vertices. Finally, by Obs(P) we will denote the set of
obsolete edges, which by definition are those edges of H that are incident to
some vertex of P\ {p1,par}. We call them obsolete because they cannot be
‘greedily’ used to extend the order of P.

From now on, suppose for a contradiction that it is not possible to find
an H-sided path of order |P|+1 or |P|+ 2. Then the following claims hold.

Claim 25. The first and final vertex of P are introvert.

Proof. Suppose by symmetry that the first vertex p; is extravert. Then it
has an H-neighbour pgy outside P, so poP is an H-sided path of order |P|+1.
Contradiction. &

Claim 26. |Obs(P)| > max{kA,2k(k —1)}.

Proof. Suppose not. Then | Obs(P)| < max{kA,2k(k—1)} < e(H). There-
fore there exists an edge e* in H that is not incident to any vertex of P.
The final edge e of P is in H, so e* and e must be at distance ezactly 2.
This implies that we can extend P to an H-sided path (ending on e* rather
than e) that is of order |P|+ 1 or |P| + 2. Contradiction. &

So in order to arrive at a contradiction, it suffices to show that either
| Obs(P)| < kA or |Obs(P)| < 2k(k—1). We will now derive some structural

properties of our counterexample.

Claim 27. Any two extravert vertices in the same part (both in Xp or both
in Yp) have a common neighbour outside P.

Proof. Indeed, suppose without loss of generality that p;,p; are two ex-
travert vertices in Xp, with H-neighbours g; respectively ¢; outside P. If
¢; = gq; we are done, so suppose ¢; # ¢;. The edges p;q; and p;g; need to
be within distance 2. Since odd cycles are not allowed in G, it follows that
pipj, ¢iq; ¢ E(G), so ¢; or ¢; must be a common neighbour of p; and p;. &
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Figure 2: A depiction of the contradictory path-extensions described by
Claim 28] (left) and Claim [32] (right). On the right, a and b are non-adjacent
3-extravert vertices and the subpath of P between a and b has order 6. This
means that a and b are too close to each other, with respect to P. Indeed,
by following the green edges (and two blue edges) rather than the red edges,
we obtain an H-sided path of order |P| + 2.

Claim 28. P contains at most two pairs of consecutive extravert vertices,
and if there are two such pairs p;p;y1 and pjpji1, then they must have
different parity, in the sense that i =j+ 1 (mod 2).

Proof. Suppose there are two extravert pairs p;pj+1, pjpj+1 of the same
parity. Then without loss of generality ¢ + 1 < j and p;,p; € Xp and
pit1,Pj+1 € Yp. See Figure By Claim p; and p; have a common
neighbour v € Y \ Yp, and p;4; and p;4; have a common neighbour v €
X \ Xp. Therefore we can replace the subpath P* = p;p;y1...pjpj41 of P
by piupjp;j—1 . ..DPit2Pi+1VPj+1, which uses the same vertices as P* and two
extra vertices u, v outside of P. Thus, we have constructed an H-sided path
of order |P| + 2. Contradiction. O

The next claim is arguably the heart of the argument.

Claim 29. There are at most ¢ extravert vertices.

Proof. Consider the vertex pairs (p2,ps), (p4,p5), --., (P20—2,P20-1). By
Claim all extravert vertices are contained in the union of these ¢ — 1
pairs. So if there are more than ¢ extravert vertices, then by the pigeonhole
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principle at least two pairs entirely consist of extravert vertices. We have ob-
tained two same-parity pairs of consecutive extravert vertices, contradicting

Claim %

From now on, let » > 0 be the maximal integer (if it exists) such that
there are nonadjacent r-extravert vertices s,t with s € Xp and t € Yp.

Claim 30. The integer r is well-defined.

Proof. Suppose r does not exist. Then the vertices of P induce a complete
bipartite graph, with parts Xp and Yp. By Claim We have |Pex| < ¢, and
therefore | Obs(P)| < | Xp||Yp|+|Pex|(A—min{| X p|, |Yp|}) = P+L(A—1) <
kA, contradicting Claim [26] %

The next claim follows directly from the definition of r.

Claim 31. The graph induced by P( r+ s complete bipartite.

Next, we show that highly extravert vertices of different parity cannot
be too close to eachother with respect to P.

Claim 32. Let q be a positive integer. Let a € Xp,b € Yp be two non-
adjacent g-extravert vertices. Then the subpath of P having endpoints a and
b has at least 2q + 2 vertices.

Proof. Suppose for a contradiction that the subpath of P with endpoints a
and b has (even) order d < 2q. Let A = {ay,...,aq} denote a subset of the
H-neighbours of @ in Y\ Yp. Similarly, let B = {b1,...,b,} denote a subset
of the H-neighbours of b in X \ Xp. See Figure [2 Because ab ¢ E(G) and
the H-edges a;a, b;b should be within distance 2 for all ¢, j, it follows that A
is complete to B. Therefore there exists a path P* = aa1biazbs . .. agbsb of
order d + 2 that only intersects P in a and b. This leads to a contradiction,
because it implies that we can construct an H-sided path of order |P| + 2,
by replacing the order d subpath of P between a and b with the order d 4 2
path P*. O

With the above claims, we now complete the proof of Theorem by
deriving a contradiction to Claim

We partition the vertices of P and estimate the H-edges incident to them
separately. First we need some definitions. Let i, = |Pex ) n x pl and i, =
|P(T+1) NYp| be the numbers of (r+ 1)-extravert vertices in the parts Xp, Yp
of the bipartite graph induced by P. Similarly, let j, = |Pex \ P nx P
and jy = |Pex \ Pty ﬂYp| be the number of vertices that are extravert but
not (r + 1)-extravert, in part Xp respectively Yp. Note that the remaining
| Xp| — iy — ju (vesp. |Yp|—1i, — jy) vertices in Xp (resp. Yp) are introvert.
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An important observation is that we can write Obs(P) as a disjoint union
FE1 U Es U E3, where

By = Ig(PUtY), By = Ig(Py) \ Ig(PUTY), and Es = E(H[Py)).

Recall from Claim 31|that G [Pe(;H)] is complete bipartite, so it is efficient

to estimate |E1| by summing the degrees (with respect to G) of PUY and

subtracting the double-counted edges of G|P, (TJFI)] This yields

|Ei| < (GRS + Y- INa(v)] < —igiy + (ip +iy)A. (4)
epc(;-&-l)

To estimate |Fs|, note that it is maximised if each vertex v € Pex \ Pe(f;H)

has exactly r H-neighbours outside G[P] and is incident to all vertices of

the opposite part that are not in Pe()fﬂ) (and leaving out one single edge

from this graph, to comply with the non-edge that defines ). In this case

|Bo| < —e(H[P \PS)+ > [Nu(v)\ PEHY] (5)
vEPex \PY T

< —Jady + Ja(r + |[Yp| —iy) + jy(r + | Xp| — iz).
The quantity |Es| is maximised if P, induces a complete bipartite graph, so
|Es| < (IXp| = ix — j2)(1YP] — iy — Jy)- (6)
Summing estimates , and @, we conclude that

| Obs(P)| < (iz +iy)A + (Jz + Jy)7 + [ Xp||YP| = iz|YP| — iy Xp|
= (ig +iy) (A = £) + (Ju + jy)7r + £%. (7)

If A—¢ > r then (7)) is maximised for j,+j, = 0, so that i, +i, = |Pex|. This
means that all extravert vertices are in fact (r + 1)-extravert. By Claim

| Obs(P)| < |Pox|(A = £) + 02 < U(A —0) + 2 < kA,

a contradiction to Claim Conversely, if A — ¢ < r then the upper bound
on | Obs(P)| is maximised for i, + i, = 0, so that j, + j, = |Pex|. This
means that none of the extravert vertices is (r + 1)-extravert. By Claim
we again obtain a contradiction to Claim [26}

S < |Pex|r + < — + < —1).
Obs(P P P <l —2)+ 0> <2%k(k—-1

In the last line, we used that r < ¢ — 2, which follows from Claim and
the fact that the first and final vertex of P are introvert. O
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