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Abstract. Art gallery problems have been extensively studied over the
last decade and have found different type of applications. Normally the
number of sides of a polygon or the general shape of the polygon is used
as a measure of the complexity of the problem. In this paper we explore
another measure of complexity, namely, the number of guards required to
guard the boundary, or the walls, of the gallery. We prove that if n guards
are necessary to guard the walls of an art gallery, then an additional
team of at most 4n−6 will guard the whole gallery. This result improves
a previously known quadratic bound, and is a step towards a possibly
optimal value of n − 2 additional guards. The proof is algorithmic, uses
ideas from graph theory, and is mainly based on the definition of a new
reduction operator which recursively eliminates the simple parts of the
polygon. We also prove that every gallery with c convex vertices can be
guarded by at most 2c − 4 guards, which is optimal.

Keywords: Art Gallery, Pseudo-triangulation.

1 Introduction

Art gallery problems are, broadly speaking, the study of the relation between
the shapes of regions in the plane and the number of points needed to guard
them. The problem of determining how many guards are sufficient to see every
point in the interior of an n-wall art gallery room was first posed by Klee [11].
Conceptually, the room is a simple polygon P with n vertices, and the guards
are stationary points in P that can see any point of P connected to them by
a straight line segment lying entirely within P . The first “art gallery theorem”
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was obtained by Chvátal [3], who demonstrated that given any simple poly-
gon with n sides, the interior of the polygon can be guarded with at most �n

3 �
guards and that this number of guards is sometimes necessary. Fisk [8] later
found a simpler proof which lends itself to an O(n log n)-time algorithm devel-
oped by Avis and Toussaint [2] for locating these �n

3 � stationary guards. With
some restriction on the shape of the polygon, for example if the polygon is rec-
tilinear, that is, the edges of the polygon are either horizontal or vertical, Kahn
et al. [12] have shown that �n

4 � guards are sufficient and sometimes necessary.
Sack [20] and Edelsbrunner et al. [6] have devised an O(n log n)-time algorithm
to locate these �n

4 � guards. These classical results in the theory of art galleries
have spawned a plethora of research (see the monograph by O’Rourke [18], and
the surveys [21,23,25] for overviews of previous work). In particular, since then
the art gallery problems have emerged as a research area that stresses com-
plexity and algorithmic aspects of visibility and illumination in configurations
comprising obstacles and guards.

In most of the reseach papers in the field, the number of sides of a polygon or
restriction on the shape of the polygon is used as a very natural measure of the
“complexity” of the polygon. The aim of this paper is to explore another measure
of complexity, namely the number of guards required to guard the boundary, or
the walls, of the gallery. As we will see in the next sections, this new complexity
measure can be regarded as a mixture of the two named ones: the shape and the
number of sides, but remains different and has its own characteristics. As shown
in Figure 1, a team of guards inside a gallery can see the walls (where paintings
are hung), without necessarily guarding the whole gallery (where sculptures are
displayed), showing that these two notions of complexity are in general different.
More precisely, the question we investigate in this paper is the following: given
that the interior walls of a polygon can be guarded with at most n guards,
how many additional guards may be needed to guard the whole interior? This
question has been first explored by Aloupis et all. in [1] in their study of fat
polygons. They proved that an additional number of at most 3n2/2 guards can
guard the whole gallery.

Main Results. We prove the following linear bound.

Theorem 1. Let M be a polygonal gallery. If the walls of M can be guarded by
at most n > 1 guards, an additional set of 4n − 6 guards is sufficient to guard
the interior of M .

Observe that when n = 1, the unique guard sees all the walls, hence sees the
whole gallery. Most likely, the previous bound is not sharp. We offer the following
conjecture.

Conjecture 1. If the walls of a gallery can be guarded by n > 1 guards, then
n − 2 additional guards are sufficient to guard the whole gallery.

If Conjecture 1 is true then the given value would be optimal, as is shown by the
example in Figure 2. In this example, there are n−2 “small rooms” attached by
narrow entrances to a main room. Guarding the walls requires at most n guards
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Fig. 1. Three guards are enough the
guard the paintings (on the walls), but
not the sculpture in the shaded area.
Dashed lines are lines of sight of the
guards.

. . . 

Fig. 2. Black dots indicate guards. The
shaded areas indicate parts not seen by
any of the current n guards, and dashed
lines are lines of sight of the guards.

(as shown): one guard in each of the “small rooms” off the main room, and one
guard each of the two far corners of the main room. These latter two guards
each have a line of sight along one wall of each small room. However, with such
a set of guards the parts of the gallery’s interior shaded in dark grey are left
unguarded. To guard the whole gallery requires two guards in each of the “small
rooms”, and an additional two guards in the main room.

The proof of Theorem 1 uses the fact that every gallery with c convex ver-
tices can be guarded by at most 2c − 4 guards. This latter result is optimal. In
order to apply induction to bound the number of additional guards required to
guard M , we first reduce our gallery to another gallery with certain guaranteed
structural properties that make it easier to analyse. We do so by means of a new
transformation operator T (·, ·), which takes as an argument a gallery N and a
set of guards G that guards the walls of N , and returns another gallery N ′. The
operator T captures the complexity of the polygon by successfully deleting the
parts which do not contribute to the main complexity. It has a nice definition
and the general idea behind it may hopefully be applied to other contexts. On
the complexity side, using the reduction operator T and earlier results [16,7],
one can infer that the general problem of calculating the number of extra guards
needed is NP-complete and does not admit a PTAS, i.e. is APX-hard.

Related Work. As we mentioned before, the literature on the art gallery prob-
lems is huge and different type of strategies and situations have been considered.
Let us briefly review some of the works related to this paper. Laurentini [14] in-
vestigated the problem of covering the sides of the polygon and not necessarily
the interior—related complexity questions being studied in another paper [9].
Efrat et al. [5] introduced the link diagram of a polygon. As we will see later,
the last step in the proof of Theorem 1 is based on a certain kind of link dia-
gram between the guards. It is interesting to explore the relations between the
two notions. As the graph we use is based on the connectivity between guards,
another related subject is that of the guarded guard art gallery problem [15,17].
In particular, one could investigate the guarded guard version of our problem.
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Notations and Basic Definitions. Let us give some formal definitions. We let S
be the closure of the set S ⊂ R2. A simply connected, compact set M ⊂ R2

is polygonal if its boundary ∂M is a simple closed polygon with finitely many
vertices. The set M is nearly polygonal if M can be written as the union of
polygonal galleries M1, . . . , Mk such that

(i) for distinct i, j ∈ {1, . . . , k}, letting Ei,j = Mi ∩ Mj, either Ei,j = ∅ or Ei,j

contains a single point ei,j ; and
(ii) the connectivity graph with node set {v1, . . . , vk}, where vi represents the

polygonal gallery Mi and nodes vi and vj are adjacent whenever Mi∩Mj 
= ∅,
is a tree.

We sometimes refer to the set ∂M as the walls of M , and to M1, . . . , Mk as the
rooms of M . A point p ∈ M is a cut-vertex of M if M \{p} is not connected—so
the cut-vertices of M are precisely the points ei,j defined above.

If M is a polygonal gallery, then we may describe M by simply listing the
vertices of the polygon ∂M in their cyclic order, which we always assume is
given in the “clockwise direction”. Similarly, we may describe a nearly polyg-
onal gallery M by listing the vertices of ∂M in cyclic order (again, in this
paper always clockwise). If M is the nearly polygonal gallery described by
P = (p1, . . . , pk, pk+1 = p1), then M is polygonal precisely if P has no repeated
points. Given points x and y of ∂M , by ∂M [x, y] we mean the subset of ∂M
starting at x and ending at y and following the cyclic order. These straightfor-
ward definitions and facts are depicted in Figures 3 and 4. We will also often
abuse notation and write P or P [x, y] in place of ∂M or ∂M [x, y], respectively.

p1

p2

p3

p4

p5

x

y

Fig. 3. (a) A polygonal gallery defined
by the sequence (p1, p2, p3, p4, p5, p1).
The set ∂M [x, y] is shown in bold.

p4

p5

p1

p2

p3

p6

Fig. 4. (b) A nearly polygonal
gallery defined by the sequence
(p1, p2, p3, p4, p5, p6, p1), with p6 = p3

A guard is a point of M . A guard g sees a point p of M if the line segment
[g, p] is included in M . Unless otherwise stated, G is always a set of guards in M .
We say that G guards M if every point of M is seen by a guard of G. Similarly, G
guards ∂M (or G guards the walls of M) if every point of ∂M is seen by a guard
of G. The guarding number of M is the minimum number of guards necessary
to guard M .
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2 Guards Versus Convex Vertices

Let P = (p1, . . . , pk, pk+1 = p1) describe a nearly polygonal gallery M . The goal
of this section is to prove that the guarding number of M is at most 2c − 4,
where c is the number of convex vertices of M . This bound is sharp: an example
is given in Figure 5. The polygon shown in Figure 5 contains five convex vertices.
To bound the number of guards required, consider the grey shaded region of the
polygon. Regardless of how guards are placed outside the shaded region, the dark
grey area remains unguarded, and no single guard can see all the dark grey area.
Thus, the grey shaded region of the polygon must contain two guards. Similarly,
the two other “concave triangular” areas must each contain two guards, for a
total of six guards. This example can easily be generalised to show that for every
c ≥ 5, there is a polygon with c convex vertices requiring 2c − 4 guards.

Fig. 5. A gallery with five convex vertices and guarding number six

We will use pseudo-triangulations of polygons to obtain our bound. A pseudo-
triangle is a simple polygon with exactly three convex vertices. Given a simple
polygon P , a pseudo-triangulation of P is a partition of the interior of P into
non-overlapping pseudo-triangles whose vertices are all among vertices of P .
We refer to the survey of Rote et al. [19] for further exposition about pseudo-
triangulations. In our considerations, we need the following result.

Theorem 2. Every simple polygon with k convex vertices admits a pseudo-
triangulation consisting of k − 2 pseudo-triangles.

It is easy to see that

Lemma 1. The guarding number of a pseudo-triangle is at most 2. Moreover,
it is one if the pseudo-triangle contains two consecutive convex vertices.

The next theorem is a direct consequence of Theorem 2 and Lemma 1.

Theorem 3. Let M be a polygonal gallery with c convex vertices for some in-
teger c ≥ 3. Then the guarding number of M is at most 2c − 4 − s, where s = 1
if M contains two consecutive convex vertices, and s = 0 otherwise.
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More generally, using pseudo-triangulations, one can show 1

Theorem 4. Let M be a polygonal gallery with c convex vertices for some in-
teger c ≥ 3 such that these vertices appear in t chains of consecutive convex
vertices. Then the guarding number of M is at most c + t − 4.

As we don’t use Theorem 4 in this full generality, we leave its proof to the full
version of this paper.

3 Sculpture Galleries

We now turn our attention to the proof of Theorem 1, which we will prove
inductively. For the purposes of our induction, we will in fact prove the following,
stronger result.

Theorem 5. Let M be a nearly polygonal gallery. If ∂M can be guarded with
at most n guards, an additional set of 4n − 6 guards is sufficient to guard M .

In order to apply induction to bound the number of additional guards required
to guard M , we first “reduce” M to another gallery M ′ with certain guaranteed
structural properties that make it easier to analyse. We do so by means of a
transformation operator T (·, ·), which takes as an argument a nearly polygonal
gallery N and a set of guards G that guards the walls of N , and returns another
nearly polygonal gallery N ′.

Roughly speaking, the effect of T is to “trim off” a section of the polygon N
that is unimportant to any of the lines of sight of the guards. Before defining T ,
then, we first formalise this notion of “importance”. Let U = U(N, G) be the
set of points of N not seen by any guard g ∈ G. We say that a point p of N is
important (with respect to N and G) if p ∈ G or if p ∈ U or if p is a cut-vertex
of N .

When there is no risk of confusion, we will write T (N) instead of T (N, G). We
also remark that the operator T will be such that T (N, G) is nearly polygonal,
U ⊂ T (N, G) ⊂ N , G ⊂ T (N, G), and G guards the walls of T (N, G). We ask the
reader to keep these properties in mind while reading the definition of T (N, G),
to which we now proceed.

3.1 The Definition of the Operator T (N, G)

Let N have rooms N1, . . . , Nk, and suppose that N is described by P =
(p1, . . . , pm, p1). We say Ni is a leaf if there is at most one j 
= i such that
Nj ∩ Ni 
= ∅. By N−

i we mean the set Ni \ ∪j �=iNj. Ni is empty if N−
i ∩ G = ∅.

(A) If there is 1 ≤ i ≤ k such that Ni is an empty leaf then set T (N) =
N \ N−

i = N \ Ni.
1 We are very gratefull to the first referee for pointing out that the proof of Theo-

rem 3 we presented in the first version of this paper, which didn’t use the pseudo-
triangulations, could be simplified and generalised to derive theorem 4 without using
the pseudo-triangulations.
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(B) Otherwise, if N contains a cut-vertex p such that p /∈ G and such that
for each simply connected component N∗ of N \ {p}, |G ∩ N∗| < |G| and
G ∩ N∗ guards N∗, then set T (N) = N .

(C) Otherwise, if every convex vertex of ∂N is important, set T (N) = N .

If none of (A),(B), or (C) occur, then ∂N contains a convex vertex pi that is
not important (and in particular is not a cut-vertex). Choose x ∈ [pi−1, pi[ and
y ∈]pi, pi+1] such that �xpiy contains no important points except perhaps pi−1
and or pi+1, with x as close to pi−1 as possible subject to this, and with y as
close to pi+1 as possible subject to the previous constraints. We note that if
[x, y] ∩ ∂N contains an interval of positive length, then [x, y] must contain at
least one guard; for, letting [a, b] be some interval in [x, y] ∩ ∂N , no finite set of
guards lying outside �xpiy can see all of �apib. (This situation is depicted in
Figure 6.)

(D) If G∩]x, y[ is non-empty choose points x′ ∈]x, pi[ and y′ ∈]pi, y[
arbitrarily. Let g be some guard of G∩]x, y[ and let T (N) =
(N \ �xpiy) ∪ �xx′g ∪ �y′yg. (This case is shown in Figure 7)

a bx y

pi

N

Fig. 6. No matter how guards are
placed outside of �xpiy, some part of
�apib close to [a, b] will not be seen by
any guard

x y

pi

N

x′ y′

g

Fig. 7. The situation in case (D). The
dark shaded region belongs to N but
not to T (N).

(E) Otherwise, suppose x ∈ G or y ∈ G – without loss of generality, we presume
x ∈ G. Choose z ∈ [x, y] ∩ ∂N such that [x, z] is not contained in ∂N ,
and as close to x as possible subject to this. Choose z′ ∈ ∂N very close
to z and after z in the cyclic order. Finally, choose x′ in [x, y] ∩ ∂N as
far from x as possible such that [x, x′] ⊂ ∂N (possibly x′ = x), and set
T (N) = N \ �x′zz′ . (This case is shown in Figure 8.)

If none of (A)-(E) occur then [x, y] ∩ G = ∅, so [x, y] ∩ ∂N contains no interval
of positive length.

(F) Otherwise, if x = pi−1, y = pi+1, or if ]x, y[∩∂N 
= ∅, then set T (N) =
(N \ �xpiy).
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If (F) does not occur then we may assume without loss of generality that x 
=
pi−1. Since [x, y] ∩ G = ∅ and ]x, y[∩∂M = ∅, by our choice of x and y there
must be z ∈ [x, y[∩U .

(G) Otherwise, if x ∈ U , then set T (N) = (N \ �xpiy).
(H) Otherwise, let z be the point of ]x, y[ that is closest to x such that z ∈ U .

Pick a point z′ /∈ �xpiy chosen close to z in order to guarantee that �xzz′

does not contain a guard and is disjoint from U and from ∂N . Finally, set
T (N) = N \ (�xpiy ∪ �x′zz′). (This case is shown in Figure 9.)

x
y

pi

N

x′
z

z′

Fig. 8. The situation in case (E). The
grey shaded region belongs to N but
not to T (N).

x
y

pi

N

z

z′

Fig. 9. The situation in case (H). The
grey shaded region belongs to N but
not to T (N), and the black shaded re-
gion belongs to U .

When applying T repeatedly, we will usually write T 2(N) in place of T (T (N)).
As mentioned at the start of Section 3.1, a key property of this (rather cum-
bersome) transformation is that if N and G satisfy the hypotheses of Theorem
5 then T (N) and G also satisfy the hypotheses of Theorem 5. Another impor-
tant property of T is that its repeated application is guaranteed to increase the
value of a certain bounded invariant that can be associated to gallery-guard set
pairs N, G, and so by applying T to any such pair N, G enough times, we are
guaranteed to reach a fixed point of the transformation T .

To define this invariant, we first introduce one additional piece of notation.
Let C denote the set of cut-vertices of N , and, for c ∈ C, let κ(c) be the number
of simply connected components of N \ {c}. The invariant, which we denote
Φ(N, G) (or Φ(N) when there is no risk of confusion), is equal to the number of
convex vertices which are guards, plus the number of convex vertices in U , plus∑

c∈C∩G(κ(c) − 1).
We hereafter refer to vertices that are also guards as occupied, and vertices

that are in U as critical. We observe that every occupied (resp. critical) convex
vertex of N is an occupied (resp. critical) convex vertex of T (N). It thus follows
from the definition of Φ that Φ(T (N), G) ≥ Φ(N, G). The main property that
makes this invariant useful is captured by the following lemma.
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Lemma 2. For any nearly polygonal gallery M with no set of empty leaves, and
any finite set of guards G that see all of ∂M , if T 2(M) 
= T (M) 
= M then either
Φ(T (M)) > Φ(M) or T (M) has strictly fewer vertices than M .

Let us postpone the proof of Lemma 2 to the end of the paper.

3.2 The Proof of Theorem 5

Let M and G be as in the statement of Theorem 5 and let g = |G|. If g = 1,
the unique guard sees the whole gallery M . Next suppose that g > 1 and that
the statement of Theorem 5 holds for all values n < g. As previously, we let
U = U(M, G) be the (open) set of points of the gallery M that are not seen by
any guard of G.

Let M0 = M ; for i ≥ 1 set Mi = T (Mi−1, G), It turns out that the number
of critical convex vertices in all of the galleries Mi can be bounded uniformly in
terms of g; this is the substance of the following lemma.

Lemma 3. For all i ≥ 0, there are at most g − 1 critical convex vertices in Mi.

We will prove this lemma along with Lemma 2, at the end of the paper.
We observe that M contains precisely 1+

∑
{c∈C:κ(c)>2}(κ(c)−1) leaves (this

can be seen by a straightforward induction). Since M contains no empty leaves,
it follows that

g − 1 ≥
∑

{c∈C:κ(c)>2}
(κ(c) − 1) ≥

∑

{c∈C∩G:κ(c)>2}
(κ(C) − 1) ,

so ∑

c∈C∩G

(κ(C) − 1) ≤ g +
∑

{c∈C∩G:κ(c)>2}
(κ(C) − 1) ≤ 2g − 1 .

Furthermore, there are at most g occupied convex vertices. It follows by Lemma
3, the above inequalities and the definition of Φ that Φ(Mi) ≤ 4g − 1 for all i. By
the observation immediately preceding Lemma 2, Φ(Mi+1) ≥ Φ(Mi) for all i, and
Lemma 2 then implies that there exists an integer j such that T (Mj) = Mj. In
this case, by the definition of the operator T (·), one of (B) or (C) occurs for Mj .

We now show that an additional set of atmost 4g−6 guards suffices to guardMj .
Since U ⊂ Mj, these guards also guard U in Mj; since Mj ⊆ M , these guards also
guardU in M ; so together with G, they guard all ofM , as claimed. We now assume,
purely for the ease of exposition, that j = 0, i.e., that Pj = P and Mj = M ; this
eases the notational burden without otherwise changing the proof.

If (B) occurs then we let p be a cut-vertex as described in (B). Let N−
1 , . . . , N−

r

be the simply connected components of M − {p}, and for i ∈ {1, . . . , r} let
N+

i = N−
i , let Gi = N+

i ∩G and let gi = |Gi|. Since p /∈ G, we have
∑r

i=1 gi = g.
Furthermore, since Gi guards N+

i and gi < g for all i ∈ {1, . . . , r}, the induction
hypothesis implies the existence of Hi ⊂ N+

i such that |Hi| ≤ 4gi−6 and Gi∪Hi

guards N+
i . In this case

⋃r
i=1(Gi ∪ Hi) guards M , and

∣
∣
∣
∣
∣

r⋃

i=1

Hi

∣
∣
∣
∣
∣
≤

r∑

i=1

(4gi − 6) ≤ 4
r∑

i=1

gi − 6r ≤ 4r − 8 < 4r − 4 .
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If (C) occurs then since the number of critical convex vertices is at most g −1
by Lemma 3, and the number of occupied vertices is at most g, the total number
of convex vertices of our gallery M is at most 2g − 1. It follows from Theorem 3
that there is a set H of at most 2(2g − 1) − 4 = 4g − 6 additional guards that
guard M , and hence guard U . �

3.3 Proofs of Lemmas 2 and 3

Having established Theorem 1 assuming that Lemmas 2 and 3 hold, we now turn
to the proofs of these lemmas.

Proof (of Lemma 2). Let M and G be as in the statement of the lemma, and
suppose that T (M) 
= M . Let M1 = T (M) and let M2 = T 2(M). For any of the
conditions (A)-(H) in the description of T – say (E), for example – we will use the
shorthand “(E) holds for M (resp. M1, M2)” if, letting N = M (resp. M1, M2)
in the definition of T (·), the condition described in (E) holds and none of the
earlier conditions hold.

By the definition of T (·), if M1 
= M , then one of (A) or (D)-(H) must hold
for M . We now show that in each case, either M1 has strictly fewer vertices than
P , Φ(M1) > Φ(M), or M2 = M1.

– If (A) holds for M then T (N) has strictly fewer vertices than N .
– If (D) holds for M then g is a cut-vertex in M1 and, more strongly, M1 \ {g}

has strictly more connected components than M \{g}. Thus Φ(M1) > Φ(M).
– If (E) holds for M then since int(�xpiy) ∩ G = ∅, x′ is a cutvertex in M1

and, more strongly, (B) holds for M1 (with p = x′). Thus M2 = M1.
– If (F) holds for M and x = pi−1, y = pi+1, then M1 contains strictly fewer

vertices than M . If (F) holds for M and ]x, y[∩∂M 
= ∅, we first observe
that since [x, y] ∩ G = ∅, no guard on the line through x and y can see
int(�xpiy). As every point in int(�xpiy) is guarded, it follows that every
point in [x, y] is seen by some guard g not on the line through [x, y]. Now
let z be a point in ]x, y[∩∂M ; then z is a cut-vertex in M1. Furthermore, by
the above comments it must be the case that (B) holds for M1 (with p = z).
Thus M2 = M1.

– If (G) holds for M then x is a critical convex vertex in M1 but not in M , so
Φ(M1) > Φ(M).

– Finally, if (H) holds for M then z is a critical convex vertex in M1 but not
in M , so Φ(M1) > Φ(M).

This completes the proof of Lemma 2.

Proof (of Lemma 3). Let P = (p1, . . . , pk, p1) describe M . We form a graph G
whose vertex set is the set G of guards of M . For every critical convex vertex pj ,
we choose one guard gi that sees some non-empty interval ]xj , pj [ of [pj−1, pj ],
and one guard g′j that sees some non-empty interval ]pj , yj [ of [pj , pj+1], and add
the edge gjg

′
j to G. By construction, the number of critical convex vertices of P
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is at most the number of edges of G. We shall show that G contains no cycles,
from which the conclusion immediately follows.

We first observe that if pj is a critical convex vertex of P , then the angle
pj−1pjpj+1 is strictly positive. Therefore, gj is different from gj+1, or else the
quadrilateral gjxjpjyj would be entirely seen by gj, contradicting the fact that
pj is in the closure of U . It follows that G contains no loops (cycles of length 1).

Next, suppose that G contains a cycle g1, g2, . . . , gk, gk+1 = g1 with k ≥ 2
(in which case gi+1 = g′i and gigi+1 is the edge corresponding to some critical
convex vertex pi, for i ∈ {1, . . . , k}). In this case, the polygonal line

PL = (g1, p1, g2, p2, . . . , gk, pk, g1) ,

which is not necessarily simple or even uncrossing, contains some simple, closed
polygonal line PL1 = (x, gi, pi, . . . , x) or PL2 = (x, pi, gi+1, . . . , x). We emphasise
that though a line segment [gi, gi+1] may not be contained within M , PL is fully
contained within M .

Given a critical convex vertex pj , as the angle at pj is convex, pj can only
appear in PL as the endpoint of a line segment. Furthermore, by definition there
is no guard, so no vertex of G, at position pj . It follows that PL contains each
of p1, . . . , pk exactly once, so the point x is not the point pi of PL1 or PL2.
Suppose first that PL contains a closed circuit such as PL1. Since x is not pi, pi

is proceeded by gi+1 = g′i in PL1. Since PL1 is simple, its interior (the bounded
component of R2 \ PL1) lies entirely within M . Since pi is convex, the guard
gi sees a non-empty interval ]pi, y[ for some y ∈]pi, g

′
i[. This means that the

triangle gipiy is entirely seen by gi, which contradicts the fact that pi is in the
closure of U . A similar contradiction occurs when considering PL2 instead of
PL1. Therefore, G contains no cycles of length at least 2, so no cycles at all, and
hence has at most g − 1 edges.

4 Conclusion

It would be interesting to consider the approxamibility of the problem. In par-
ticular, we do not know if the problem admits a constant factor approximation
(the best approximation algorithm [10,4] for the general art gallery problems has
ratio log(opt)). The generalisation of the problem to three dimensions is also
another natural question to investigate.
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