
Rerouting requests in WDM networks†

D. Coudert1 and S. Ṕerennes1 and Q.-C. Pham2 and J.-S. Sereni1

1-MASCOTTE, I3S-CNRS/INRIA/UNSA, 2004 Route des Lucioles, BP93, F-06902, Sophia-Antipolis Cedex
2-Ecole Normale Suṕerieure, 45 rue d’Ulm, F-75230 Paris cedex 05

We model a problem related to routing reconfiguration in WDM networks. We establish some similarities and differ-
ences with two other known problems: the pathwidth and the pursuit problem. We then present a distributed linear-time
algorithm to solve the problem on trees. Last we give the solutions for some classes of graphs, in particular complete
d-ary trees and grids.

Keywords: process number, pursuit problem, pebbling, rerouting, WDM

1 Introduction
Usually, when connexion requests are added or removed from a network, for instance a WDM network, the
routing of older connexions is not modified. Hence it is likely that after some additions and removings, the
overall use of resources is far from optimal. In particular, a new request may be rejected, even if it could be
added up to a whole rerouting of older requests. So operators have to reorganise regularly the routing of all
requests so as to make better use of the resources. Here we are interested in the problem of going from one
routing to another without loss of services.

Given a network, a set of requestsI and two different routings for it in the network,R1 andR2, we want
to switch from routingR1 to routingR2. Let u andv be two requests. We denote byRi(u) (resp. Ri(v))
the routing of requestu (resp. v) in Ri ,1≤ i ≤ 2. If R2(u)∩R1(v) 6= /0, i.e. the routing of requestu in
R2 uses resources already used by the routing of requestv in R1, then obviously the requestv has to be
rerouted before we can reroute requestu. However, a request might be switched to an intermediate route,
that uses available resources. For instance, the operator may reserve a dedicated wavelength in the network
for temporary routes. We assume that each request cannot be switched to more than one temporary route,
that is the next routing of a request routed on a temporary route has to be its final routing. When a request
that was previously switched to a temporary route reaches its final routing, then the freed resources can be
used again, for another request. While independent switching of requests can be made simultaneously, we
will consider, for matter of exposition, that only one request is switched per unit of time.

The problem is modelled as follows: we construct a directed graphD = (V,A), where each vertexu
corresponds to one request, and there is an arc from vertexu to vertexv if and only if R2(u)∩R1(v) 6= /0.
A vertex is said to beprocessedas soon as its corresponding request has been rerouted. We introduce the
notion of Temporary Memory Unit (TMU): routing the requestu on an intermediate route corresponds to
putting the vertexu in a TMU. So a vertex can be processed if and only if all its outneighbours are either
processed or in TMU’s. Note that a vertex without any outneighbour can be processed at any time. There
are two basic operations: process a vertex according to the preceding rule ; put a vertex in a temporary
memory unit. Figure 1 shows the processing steps of a graph using one TMU.

We underline the fact that once placed in a TMU, a vertex cannot recover its original state: it has to be
processed. Nevertheless, it can occupy its TMU as long as desired. Processing a vertex which occupies
a TMU frees the TMU, so that it can immediately be used by another vertex. The digraph is said to be
processedwhen all its vertices have been processed. The problem is hence to find a suitable order to

†This work has been partially funded by European project IST FET CRESCCO, the ACI-SI PRESTO and the CRC CORSO with France Telecom

D. Coudert1 and S. Ṕerennes1 and Q.-C. Pham2 and J.-S. Sereni1

Fig. 1: Processing of a graph: processed vertices are in grey and vertices in TMU are in black.

process all the vertices. If we don’t want to use any TMU, then it is clear that such a vertex ordering exists
if and only if the digraph is acyclic; and in this case a processing order can be found in linear time. On the
contrary, if we can use an arbitrary large number of TMU’s, then we can first put all vertices in TMU’s and
then process them in any order. We aim at minimising the number of TMU’s simultaneously in use. Notice
that the problem is upper bounded by theminimum forward vertex set number, that is the smallest number
of vertices which intersect all directed cycles.

The process numberof D is the minimum number of temporary memory units for which there exits a
process strategy forD. We denote it byp(D). A process strategy which usesp (resp. at mostp, resp. at
leastp) TMU’s is called ap-process strategy (resp.(≤ p)-process strategy, resp.(≥ p)-process strategy).
Remark that the digraphs we are dealing with can have loops. This may increase the process number by at
most one, and it is straightforward to construct a loopless digraphD′ such thatp(D) = p(D′). WhenD is
symmetric, we will work for convenience on the underlying undirected graphG = (V,E).

This problem recalls thepursuit problem, introduced by Breisch [Bre67] and Parsons [Par78a, Par78b].
It has been well studied since, see for instance [MHG+88, BS91, LaP93, KP86, BFFS02]. Given a graph
G = (V,E), the goal is to clear the graph using the minimal number of searchers. The basic operations are
the following: place a searcher on a vertex ; remove a searcher from a vertex ; and move a searcher along
an edge. An edge is said to becontaminatedif it is capable of harbouring a fugitive. An edge isclearedby
placing a searcher at one end (as aguard) and moving a second searcher along the edge. If all the other edges
incident to the guarded endpoint are already clear, then the guard can clear the contaminated edge alone by
moving along it. Once cleared, an edge remains clear as long as every path from it to a contaminated edge
is blocked by at least one guard. If it is not the case, the edge isrecontaminated. The graph is cleared as
soon as all the edges are simultaneously clear. Asearch strategyis a sequence of pebbling operations that
will clear the graph. Thesearch numbers(G) of a graph is the minimum number of searchers for which a
search strategy exists. The following result of Turner (which is proved in [EST94] and was first mentioned
as a personal communication of Turner in [KP86]), establishes a link between the pursuit problem and the
vertex separator(also known as thepathwidthproblem, see for instance [DPS02]):

Proposition 1 ([EST94]) For any graphG, vs(G) ≤ s(G) ≤ vs(G) + 2, wherevs(G) denotes the vertex
separator ofG.

To provide some basic examples, let us mention that for any pathP, vs(P) = s(P) = 1 while p(P) = 2
except ifP is of length at most3 in which casep(P) = 1. If S is any star, thenvs(S) = 1 = p(S) while
s(S) = 2.

2 Relation to known problems
Proposition 2 For any digraphD, vs(D)≤ p(D)≤ vs(D)+1.

Proof. Consider ap-process strategy forD, and letL be the order in which vertices are processed. Notice
that if we stop the strategy just after theith vertex has been processed, then any non-processed vertex having
a processed neighbour must be in a TMU. As this is true for all1≤ i < |V|, this exactly means that the vertex
separator of(D,L) is p, sovs(D)≤ p(D).
Let L be an ordering of the vertices ofD, and say the vertex separator of(D,L) is vs. We consider a process
strategy forD which consists of processing the vertices in the increasing order induced byL. The first vertex
can be processed by putting its at mostvsneighbours in temporary memory units by definition. Suppose
i ≤ 1 vertices have been processed. We denote byP the set of processed vertices,M the set of vertices

Rerouting requests in WDM networks

in TMU’s and v the next vertex to be processed. Ifv /∈ M, then as the vertex separator of(D,L) is vs,
|M∪(N+(v)\P)| ≤ vs, so we can put all the outneighbours ofv which are not inM∪Sin TMU’s and process
v. This will use at mostvsTMU’s simultaneously. Ifv∈M, then we have|M \{v}∪ (N+(v)\P)| ≤ vs, so
putting all the neighbours ofv not inM∪S in TMU’s will use at most (and possibly)vs+1 TMU’s. 2

As the vertex separator problem is APX [DKL87], the preceding result shows that the process number
problem also is. The following proposition induces a construction which enforces that each parameter
grows by1.

Proposition 3 Let G1,G2 andG3 be three connected graphs such thatvs(Gi) = vs,s(Gi) = s and p(Gi) =
p,1≤ i ≤ 3. We construct the graphG by putting one copy of each of theGi , and we add one vertexv that
has exactly one neighbour in each of theGi ,1≤ i ≤ 3. Thenvs(G) = vs+1,s(G) = s+1 andp(G) = p+1.

Proof. We only show the proof for the process number. It is evident how to processG with p+1 TMU’s.
Consider ak-process strategy forG. Without loss of generality, we can assume thatGi is the ith graph of
G1,G2 andG3 to havep of its vertices simultaneously in temporary memory units. Remark that once a
vertex ofGi has been put in a TMU, then there is always at least one vertex ofGi in a TMU until Gi is
processed. So the first timep vertices ofG2 occupy TMU’s,G1 must have been totally processed and no
vertex ofG3 has been either processed or put in a TMU. Thus the vertexv must be in a TMU. This gives
thatk≥ p+1. 2

Using Proposition 3, one can show:

Theorem 1 Let vs≥ 3, s∈ {vs,vs+ 1,vs+ 2} and p ∈ {vs,vs+ 1}. There exists a graphGvs such that
vs(Gvs) = vs,s(Gvs) = s and p(Gvs) = p.

So all the cases covered by Propositions 1 and 2 occur. These differences are created by reflecting an
initial difference on a small graph. However, if we focus on structural properties of graphs that can be
searched or processed with a fixed number of searchers or TMU’s, we actually get important differences.
In [MHG+88], all graphs with search number at most3 are characterised. In particular, it is shown that
a biconnected graph has search number at most3 if and only if it is outerplanar and bipolar. On the
opposite, the complete bipartite graphK3,3 can be3-processed. Until now, we obtained a minor-excluded
characterisation for all graphs that can be2-processed. We now pay more attention to the case of graphs
that can be3-processed.

3 Optimal algorithm on trees
Both the vertex separator and the search number problem can be solved in linear time on trees [Sko03,
BFFS02]. We present here a distributed linear-time algorithm which computes the process number of trees
and gives an optimal strategy. Let us first introduce some parameters and make a basic observation on
them: letT be a tree, andv a vertex ofT. If u1, . . . ,uk are neighbours ofv, we denote byTv(u1, . . . ,uk)
the maximum subtree ofT rooted atv such that the neighbours ofv are preciselyu1, . . . ,uk. We denote by
pF

v (T) (resp.pL
v(T)) the minimum number of TMU’s needed to process the treeT under the constraint that

the first (resp. last) step of the strategy must be to putv in a TMU (resp. to processv). It is clear from
the definition that for any vertexv of any treeT, we havep(T)≤ pF

v (T), pL
v(T)≤ p(T)+1. The following

lemma plays a key role in our algorithm.

Lemma 1 Consider a treeT which is not a star. Letv be a vertex ofT, andu1, . . . ,uk,k≥ 2 be neighbours
of v in T. For any i ∈ {1, . . . ,k}, we denote bypi (resp. pF

i , resp. pL
i) the numberp(Tui (N(ui) \ {v}))

(resp.p(TF
ui

(N(ui)\{v})), resp.p(TL
ui
(N(ui)\{v}))). We assume that the vector(p1, pF

1 , pL
1, . . . , pk, pF

k , pL
k)

is maximum for the lexicographic order among all the numberings of the neighbours. IfpF
1 ≥ pL

1, then
p(Tv(u1, . . . ,uk)) = max(2, pL

1, pF
2 , p3 + 1) else p(Tv(u1, . . . ,uk)) = max(2, pF

1 , pL
2, p3 + 1). Furthermore,

we havepF
v (Tv(u1, . . . ,uk)) = max(2, pL

1, p2 +1) and pL
v(Tv(u1, . . . ,uk)) = max(2, pF

1 , p2 +1).

Here is how the algorithm goes. Each vertexv has a listL(v) of 4 values, and is uniquely identified. At
the beginning, all the leaves are in the stateactive . All other vertices are in the stateready . Every leaf
has its values initialised to[0,0,0,0] , values of the other vertices beingnil . Each vertex having all

D. Coudert1 and S. Ṕerennes1 and Q.-C. Pham2 and J.-S. Sereni1

its neighbours but oneactive computes its own values. Letu1, . . . ,uk be the neighbours ofv which are
active . ThenL(v)[1] = p(Tv(u1, . . . ,uk)),L(v)[2] = pF

v (Tv(u1, . . . ,uk)) andL(v)[3] = pL
v(Tv(u1, . . . ,uk)).

So we compute them using Lemma 1, and some simple init rules (that may useL(v)[4]). So as to record
an optimal strategy, the vertex also records the order of its neighbours when computing its values. A vertex
which is ready staysready until it has received information from all its neighbours but one. Then it
computes its values, sends them and becomesactive . If an active vertex receives information from
its last neighbour, then if the identifier of the neighbour is lower than its own identifier it just ignores it.
Otherwise it computes again its values, using all the information it has collected now, becomesdone and
sends a special message so that anyactive vertex becomesdone . Eventually, either there will be a step
at which exactly one vertex has not computed its values yet, or exactly two vertices compute their values at
the last step, and the updating process ensures only one will compute its values using the information from
all its neighbours. In any case, ifv is the last vertex to compute its values, we will haveL(v)[1] = p(T).

Theorem 2 The preceding algorithm computes all the values and records the strategy in sequential time
O(n), and distributively withO(n) messages.

We note that this result induces an upper bound (along with a corresponding strategy) for processing
outerplanar graphs, since the dual graph of an outerplanar graph is a tree.

4 Exact process number for some classes of graphs.
Theorem 3 (i) The process number of the complete bipartite graphKm,n is min(m,n).
(ii) The process number of the complete binary tree of heighth is dh/2e, except ifh = 2 in which case it is
2.
(iii) For anyd≥ 3, the process number of the completed-ary tree of heighth is h.
(iv) The process number of the grid of sizem×n is min(m,n)+1, except ifn = m= 2 in which case it is2.
(v) The process number of the pyramid of sizen is dn

2e+1, except ifn∈ {2,3} in which case it isn−1.
(vi) Any triangulated outerplanar graph whose dual graph is a caterpillar of maximum degree3 can be
3-processed.

References
[BFFS02] L. Barrìere, P. Flocchini, P. Fraigniaud, and N. Santoro. Capture of an intruder by mobile agents. In14th

ACM Symp. on Parallel Algorithms and Architectures, 2002.

[Bre67] R. L. Breisch. An intuitive approach to speleotopology.Southwestern Cavers, 6:72–78, 1967.

[BS91] D. Bienstock and P. Seymour. Monotonicity in graph searching.J. Algorithms, 12(2):239–245, 1991.

[DKL87] N. Deo, S. Krishnamoorthy, and M. A. Langston. Exact and approximate solutions for the gate matrix
layout problem.IEEE Transactions on Computer-Aided Design, 6:79–84, 1987.

[DPS02] J. D́ıaz, J. Petit, and M. Serna. A survey of graph layout problems.ACM Computing Surveys, 34(3):313–
356, 2002.

[EST94] J. A. Ellis, I. H. Sudborough, and J. S. Turner. The vertex separation and search number of a graph.Inform.
and Comput., 113(1):50–79, 1994.

[KP86] L. M. Kirousis and C. H. Papadimitriou. Searching and pebbling.Theoret. Comput. Sci., 47(2):205–218,
1986.

[LaP93] A. S. LaPaugh. Recontamination does not help to search a graph.J. Assoc. Comput. Mach., 40(2):224–245,
1993.

[MHG+88] N. Megiddo, S. L. Hakimi, M. R. Garey, D. S. Johnson, and C. H. Papadimitriou. The complexity of
searching a graph.J. Assoc. Comput. Mach., 35(1):18–44, 1988.

[Par78a] T. D. Parsons. Pursuit-evasion in a graph. InTheory and applications of graphs (Proc. Internat.
Conf., Western Mich. Univ., Kalamazoo, Mich., 1976), pages 426–441. Lecture Notes in Math., Vol. 642.
Springer, Berlin, 1978.

[Par78b] T. D. Parsons. The search number of a connected graph. InProceedings of the Ninth Southeastern
Conference on Combinatorics, Graph Theory, and Computing (Florida Atlantic Univ., Boca Raton, Fla.,
1978), Congress. Numer., XXI, pages 549–554, Winnipeg, Man., 1978. Utilitas Math.

[Sko03] Konstantin Skodinis. Construction of linear tree-layouts which are optimal with respect to vertex separa-
tion in linear time.J. Algorithms, 47(1):40–59, 2003.

