L(2,1)-labelling of Graphs*

Frédéric Havet ${ }^{\dagger} \quad$ Bruce Reed ${ }^{\dagger \ddagger} \quad$ Jean-Sébastien Sereni ${ }^{\S}$

Abstract

An $L(2,1)$-labelling of a graph is a function f from the vertex set to the positive integers such that $|f(x)-f(y)| \geq 2$ if $\operatorname{dist}(x, y)=1$ and $|f(x)-f(y)| \geq 1$ if $\operatorname{dist}(x, y)=2$, where $\operatorname{dist}(x, y)$ is the distance between the two vertices x and y in the graph G. The span of an $L(2,1)$-labelling f is the difference between the largest and the smallest labels used by f plus 1. In 1992, Griggs and Yeh conjectured that every graph with maximum degree $\Delta \geq 2$ has an $L(2,1)$-labelling with span at most $\Delta^{2}+1$. By settling this conjecture for Δ sufficiently large, we prove the existence of a constant C such that the span of any graph of maximum degree Δ is at most $\Delta^{2}+C$.

1 Introduction

In the channel assignment problem, transmitters at various nodes within a geographic territory must be assigned channels or frequencies in such a way as to avoid interferences. A model for the channel assignment problem developed wherein channels or frequencies are represented with integers, "close" transmitters must be assigned different integers and "very close" transmitters must be assigned integers that differ by at least 2 . This quantification led to the definition of an $L(p, q)$ labelling of a graph $G=(V, E)$ as a function f from the vertex set to the positive integers such that $|f(x)-f(y)| \geq p$ if $\operatorname{dist}(x, y)=1$ and $|f(x)-f(y)| \geq q$ if $\operatorname{dist}(x, y)=2$, where $\operatorname{dist}(x, y)$ is the distance between the two vertices x and y in the graph G. The notion of $L(2,1)$-labelling first appeared in 1992 [6]. Since then, a large number of articles has been published devoted to the study of $L(p, q)$-labellings. We refer the interested reader to the surveys of Calamoneri [1] and Yeh [11].

[^0]Generalisations of $L(p, q)$-labellings in which for each $i \geq 1$, a minimum gap of p_{i} is required for channels assigned to vertices at distance i, have also been studied (see for example the recent survey of Griggs and Král' [5]).

In the context of the channel assignment problem, the main goal is to minimise the number of channels used. Hence, we are interested in the span of an $L(p, q)$ labelling f, which is the difference between the largest and the smallest labels of f plus 1 . The $\lambda_{p, q}$-number of G is $\lambda_{p, q}(G)$, the minimum span over all $L(p, q)$ labellings of G. In general, determining the $\lambda_{p, q}$-number of a graph is NP-hard [3]. In their seminal paper, Griggs and Yeh [6] observed that a greedy algorithm yields $\lambda_{2,1}(G) \leq \Delta^{2}+2 \Delta+1$, where Δ is the maximum degree of the graph G. Moreover, they conjectured that this upper bound can be decreased to $\Delta^{2}+1$.
Conjecture 1.1. ([6]) For every $\Delta \geq 2$ and every graph G of maximum degree Δ,

$$
\lambda_{2,1}(G) \leq \Delta^{2}+1
$$

This upper bound would be tight: there are graphs with degree Δ, diameter 2 and $\Delta^{2}+1$ vertices, namely the 5 -cycle, the Petersen graph and the Hoffman-Singleton graph. Thus, their square is a clique of order $\Delta^{2}+1$, so the span of every $L(2,1)$-labelling is at least $\Delta^{2}+1$.

Jonas [7] improved slightly on Griggs and Yeh's upper bound by showing that every graph of maximum degree Δ admits a $(2,1)$-labelling with span at most $\Delta^{2}+2 \Delta-3$. Subsequently, Chang and Kuo [2] provided the upper bound $\Delta^{2}+\Delta+1$ which remained the best general upper bound for about a decade. Král' and Skrekovski [8] brought this upper bound down by 1 as the corollary of a more general result. And, using the algorithm of Chang and Kuo [2], Gonçalves [4] decreased this bound by 1 again, thereby obtaining the upper bound $\Delta^{2}+\Delta-1$. We prove the following approximate version of Conjecture 1.1.
Theorem 1.1. There exists a constant C such that for every integer Δ and every graph of maximum degree Δ,

$$
\lambda_{2,1}(G) \leq \Delta^{2}+C
$$

This result is obtained by combining any of the previously mentionned upper bounds with the next theorem, which settles Conjecture 1.1 for sufficiently large Δ.

Theorem 1.2. There is a Δ_{0} such that for every graph G of maximum degree $\Delta \geq \Delta_{0}$,

$$
\lambda_{2,1}(G) \leq \Delta^{2}+1
$$

Actually, we consider a more general setup. We are given a graph G_{1} with vertex-set V, along with a spanning subgraph G_{2}. We want to assign integers from $\{1,2, \ldots, k\}$ to the elements of V so that vertices adjacent in G_{1} receive different colours and vertices adjacent in G_{2} receive colours which differ by at least 2. Typically the maximum degree of G_{1} is much larger than the maximum degree of G_{2}. In the case of $L(2,1)$ labelling, G_{1} is the square of G_{2}. We impose the condition that for some integer Δ, G_{1} has maximum degree at most Δ^{2} and G_{2} has maximum degree Δ. We show that under these conditions there exists a colouring for $k=\Delta^{2}+1$ provided that Δ is large enough. This is best possible since G_{1} may be a clique of size $\Delta^{2}+1$.

Theorem 1.3. There is a Δ_{0}, such that for every $\Delta \geq$ Δ_{0}, and $G_{2} \subseteq G_{1}$ with $\Delta\left(G_{1}\right) \leq \Delta^{2}$ and $\Delta\left(G_{2}\right) \leq \Delta$, there exists a $\left(\Delta^{2}+1\right)$-colouring c of $V\left(G_{1}\right)$ such that no edge of G_{1} is monochromatic and for every edge $x y \in E\left(G_{2}\right),|c(x)-c(y)| \geq 2$.

In the next section we give an outline of the proof. We use G_{1}-neighbour to mean a neighbour in G_{1} and G_{2}-neighbour to indicate a neighbour in G_{2}. For every vertex v and every subgraph H of G_{1}, we let $\operatorname{deg}_{H}^{1}(v)$ be the number of G_{1}-neighbours of v in H. We omit the subscript if $H=G_{1}$.

We do not explicit the value of Δ_{0}, and we assume that it is large enough so that the inequalities stated in the sequel hold.

2 A Sketch of the Proof

We consider a counter-example to Theorem 1.3 chosen so as to minimise V. Thus, for every proper subset X of the vertices of G_{1}, there is a $\left(\Delta^{2}+1\right)$-colouring c of X such that every edge of G_{1} within X is nonmonochromatic, and for every edge $x y$ of G_{2} contained within $X,|c(x)-c(y)| \geq 2$. Such a colouring of X is a good colouring. In particular, as $G_{2} \subseteq G_{1}$, this implies that every vertex v has more than $\Delta^{2}-2 \Delta$ G_{1}-neighbours as otherwise we could complete a good colouring of $V\left(G_{1}\right)-v$ greedily. Indeed for each vertex, a coloured G_{2}-neighbour forbids 3 colours, which is 2 more as being only a G_{1}-neighbour. The next lemma follows by setting $d=1000 \Delta$ and applying to G_{1} a decomposition result due to Reed [9, Lemma 15.2].

Lemma 2.1. There is a partition of V into disjoint sets $D_{1}, \ldots, D_{\ell}, S$ such that
(a) every D_{i} has between $\Delta^{2}-8000 \Delta$ and $\Delta^{2}+4000 \Delta$ vertices;
(b) there are at most $8000 \Delta^{3}$ edges of G_{1} leaving any D_{i};
(c) a vertex has at least $\frac{3}{4} \Delta^{2} G_{1}$-neighbours in D_{i} if and only if it is in D_{i}; and
(d) for each vertex v of S, the neighbourhood of v in G_{1} contains at most $\binom{\Delta^{2}}{2}-1000 \Delta^{3}$ edges.

We let H_{i} be the subgraph of G_{1} induced by D_{i} and $\overline{H_{i}}$ its complementary graph. An internal neighbour of a vertex of D_{i} is a neighbour in H_{i}. An external neighbour of a vertex of D_{i} is a neighbour that is not internal. The proof of the following lemma can be found in the fulllength version of this article [10].

Lemma 2.2. For every $i, \overline{H_{i}}$ has no matching of size at least $10^{3} \Delta$.

For each $i \in\{1,2, \ldots, \ell\}$, we let M_{i} be a maximum matching of $\overline{H_{i}}$, and K_{i} be the clique $D_{i}-V\left(M_{i}\right)$. By Lemmas 2.1 (a) and 2.2, $\left|K_{i}\right| \geq \Delta^{2}-10^{4} \Delta$. We let B_{i} be the set of vertices in K_{i} that have more than $\Delta^{5 / 4}$ external G_{1}-neighbours, and we set $A_{i}:=K_{i} \backslash$ B_{i}. Considering Lemma 2.1(b) we make the following observation.

FACt 2.1. For every index $i \in\{1,2, \ldots, \ell\},\left|B_{i}\right| \leq$ $8000 \Delta^{7 / 4}$ and so $\left|A_{i}\right| \geq \Delta^{2}-9000 \Delta^{7 / 4}$.

We are going to colour the vertices in three steps. We first colour $V_{1}:=V \backslash \cup_{i=1}^{\ell} A_{i}$ except some vertices of S. Then we colour the vertices of $V_{2}:=\cup_{i=1}^{\ell} A_{i}$. We finish by colouring the uncoloured vertices of S greedily.

In order to extend the (partial) colouring of V_{1} to V_{2} and to finish the colouring of the vertices of S, we need some properties. We will prove the following.

Lemma 2.3. There is a good colouring c of a subset Y of V_{1} such that
(i) every uncoloured vertex of V_{1} is in S;
(ii) for each edge $x y$ of every $M_{i}, c(x)=c(y)$;
(iii) for every uncoloured vertex v of V_{1} there are at least 2Δ colours that appear on two G_{1}-neighbours of v; and
(iv) for every colour j and clique A_{i} there are at most $\frac{4}{5} \Delta^{2}$ vertices of A_{i} that have either a G_{1}-neighbour outside D_{i} coloured j or a G_{2}-neighbour outside D_{i} coloured using $j-1, j$ or $j+1$.

We then show that a colouring that verifies the conditions of Lemma 2.3 can be extended to $Y \cup V_{2}$.

Lemma 2.4. Every good colouring of a subset Y of V_{1} satisfying conditions (i)-(iv) of Lemma 2.3 can be completed to a good colouring of $Y \cup V_{2}$.

By Lemma 2.3(iii), we can then complete the colouring by colouring the vertices of $V_{1}-Y$ greedily. Thus to prove our theorem, we need only prove Lemmas 2.3 and 2.4, which we do in the next two sections. We use several probabilistic tools, namely the Lovász Local Lemma, the Chernoff Bound, Talagrand's and McDiarmid's Inequalities. Each of these tools is presented in the book of Molloy and Reed [9], and most are presented in many other places. Each omitted proof can be found in the full-length version of this article [10].

3 The Proof of Lemma 2.3

In this section, we want to find a good colouring for an appropriate subset Y of $G\left[V_{1}\right]$, which satisfies conditions (i)-(iv) of Lemma 2.3. We actually construct new graphs G_{1}^{*} and G_{2}^{*} and consider good colourings of these graphs. This will help us to ensure that the conditions of Lemma 2.3 hold.
3.1 Forming G_{1}^{*} and G_{2}^{*} For $j \in\{1,2\}$, we obtain G_{j}^{\prime} from G_{j} by contracting each edge of each M_{i} into a vertex (that is, we consider these vertex pairs one by one, replacing the pair $x y$ with a vertex adjacent to all of the neighbours of both x and y in the graph). We let C_{i} be the set of vertices obtained by contracting the pairs in M_{i}. We set $V^{*}:=V_{1}-\cup_{i=1}^{\ell} V\left(M_{i}\right)+\cup_{i=1}^{\ell} C_{i}$. For each $i \in\{1,2, \ldots, \ell\}$, let Big_{i} be the set of vertices of V^{*} not in $B_{i} \cup C_{i}$ that have more than $\Delta^{9 / 5}$ neighbours in A_{i}. We construct G_{1}^{*} from G_{1}^{\prime} by removing the vertices of $\cup_{i=1}^{\ell} A_{i}$ and adding for each i an edge between every pair of vertices in Big_{i}. And G_{2}^{*} is obtained from G_{2}^{\prime} by removing the vertices of $\cup_{i=1}^{\ell} A_{i}$.

Note that $G_{2}^{*} \subseteq G_{1}^{*}$. Our aim is to colour the vertices of V^{*} except some of S such that vertices adjacent in G_{1}^{*} are assigned different colours, and vertices adjacent in G_{2}^{*} are assigned colours at distance at least 2 . Such a colouring is said to be nice. To every partial nice colouring of V^{*} is associated the good colouring of V_{1} obtained as follows: each coloured vertex of $V \cap V^{*}$ keeps its colour, and for each index i, every pair of matched vertices of M_{i} is assigned the colour of the corresponding vertex of C_{i}. So this partial good colouring satisfies condition (ii) of Lemma 2.3.

Definition 3.1. For every vertex u and every subset F of V^{*},

- the number of G_{1}^{*}-neighbours of u in F is $\delta_{F}^{1}(u)$;
- the number of G_{2}^{*}-neighbours of u in F is $\delta_{F}^{2}(u)$; and
- $\delta_{F}^{*}(u):=\delta_{F}^{1}(u)+2 \delta_{F}^{2}(u)$.

For all these notations, we omit the subscript if $F=V^{*}$.
The next lemma bounds these parameters.
Lemma 3.1. Let v be a vertex of V^{*}. The following hold.
(i) $\delta^{2}(v) \leq 2 \Delta$, and if $v \notin \cup_{i=1}^{\ell} C_{i}$ then $\delta^{2}(v) \leq \Delta$;
(ii) if $v \in S \cap \operatorname{Big}_{i}$ for some i, then $\delta^{1}(v) \leq \Delta^{2}-8 \Delta$;
(iii) $\delta^{1}(v) \leq \Delta^{2}$, and if $v \notin S$ then $\delta^{1}(v) \leq \frac{3}{4} \Delta^{2}$.

Proof. (i) To obtain G_{2}^{*}, we only removed some vertices and contracted some pairwise disjoint pairs of non-adjacent vertices. Consequently, the degree of each new vertex is at most twice the maximum degree of G_{2}, i.e. 2Δ, and the degree of the other vertices is at most their degree is G_{2}, hence at most Δ.
(ii) By Lemma 2.1(b), we have $\left|\operatorname{Big}_{i}\right| \leq 8000 \Delta^{6 / 5}$ for each index i. Moreover, a vertex v can be in Big_{i} for at most $\Delta^{1 / 5}$ values of i. Recall that for each index i such that $v \in S \cap \operatorname{Big}_{i}$, the vertex v has at least $\Delta^{9 / 5} G_{1}$-neighbours in A_{i}. So, in the process of constructing G_{1}^{*}, it looses at least $\Delta^{9 / 5}$ edges and gain at most $8000 \Delta^{7 / 5}$ edges. Consequently, the assertion follows because $\Delta^{9 / 5} \geq 8000 \Delta^{7 / 5}+8 \Delta$.
(iii) By (ii), if $v \in S$ then $\delta^{1}(v) \leq \operatorname{deg}^{1}(v) \leq \Delta^{2}$. Assume now that $v \notin S$, hence $v \in B_{i} \cup C_{i}$ for some index i. By Lemma 2.2, each set C_{i} has at most 1000Δ vertices and by Fact 2.1, each set B_{i} has at most $8000 \Delta^{7 / 4}$ vertices. Moreover, by Lemma 2.1(c), each vertex of D_{i} has at most $\frac{1}{4} \Delta^{2}$ G_{1}-neighbours outside of D_{i}. It follows that each vertex of $B_{i} \cup C_{i}$ has at most $\frac{1}{2} \Delta^{2}+1000 \Delta+$ $8000 \Delta^{7 / 4}+8000 \Delta^{7 / 5} \leq \frac{3}{4} \Delta^{2} G_{1}^{*}$-neighbours.

Our construction of G_{1}^{\prime} and G_{2}^{\prime} is designed to deal with condition (ii) of Lemma 2.3. The edges we add between vertices of Big_{i} are designed to help with condition (iv). The bound of $\frac{3}{4} \Delta^{2}$ on the degree of the vertices of $V^{*} \backslash S$ in the last lemma, helps us to ensure that condition (i) holds.

To ensure that condition (iii) holds, we would like to use condition (i) and the fact that sparse vertices have many non-adjacent pairs of G_{1}-neighbours. However, in constructing G_{1}^{*}, we contracted some pairs of nonadjacent vertices and added edges between some other pairs of non-adjacent vertices. As a result, possibly
some vertices in S are no longer sparse. We have to treat such vertices carefully.

We define \hat{S} to be those vertices in S that have at least 90Δ neighbours outside S. Then \hat{S} contains all the vertices which may no longer be sufficiently sparse, as we note next.

Lemma 3.2. Each vertex of $S \backslash \hat{S}$ has at least $450 \Delta^{3}$ pairs of G_{1}-neighbours in S that are not adjacent in G_{1}^{*}.

Proof. Let $s \in S \backslash \hat{S}$. We know that s has at least $\Delta^{2}-2 \Delta G_{1}$-neighbours. Hence it has at least $\binom{\Delta^{2}}{2}-4 \Delta^{3}$ pairs of G_{1}-neighbours. Thus, by Lemma 2.1(d), s has at least $996 \Delta^{3}$ pairs of G_{1}-neighbours that are not adjacent in G_{1}. Since $s \notin \hat{S}$, all but at most $90 \Delta^{3}$ such pairs lie in $N(s) \cap S$. Let Ω be the collection of pairs of G_{1}-neighbours of s in S that are not adjacent in G_{1}. Then $|\Omega| \geq 906 \Delta^{3}$. For convenience, we say that a pair of Ω is suitable if its vertices are not adjacent in G_{1}^{*}.

Let s_{1} be a member of a pair of Ω. If s_{1} does not belong to $\cup_{i=1}^{\ell} \operatorname{Big}_{i}$, then every vertex of S that is not adjacent to s_{1} in G_{1} is also not adjacent to s_{1} in G_{1}^{*}. Thus every pair of Ω containing s_{1} is suitable.

If $s_{1} \in \cup_{i=1}^{\ell} \mathrm{Big}_{i}$, then for each index i such that $s_{1} \in \operatorname{Big}_{i}$, the vertex s_{1} has at least $\Delta^{9 / 5} G_{1}$-neighbours in A_{i}. Hence, there are at least $\Delta^{2}-92 \Delta-\left(\Delta^{2}-\Delta^{9 / 5}\right)=$ $\Delta^{9 / 5}-92 \Delta$ pairs of Ω containing s_{1}. Recall from the proof of Lemma 3.1 that the number of edges added to s_{1} by the construction of G_{1}^{*} is at most $8000 \Delta^{7 / 5}<$ $\frac{1}{2} \Delta^{9 / 5}-46 \Delta$. Consequently, the number of suitable pairs of Ω containing the vertex s_{1} is at least half the number of pairs of Ω containing s_{1}.

Therefore, we conclude that at least $\frac{1}{2}|\Omega|>450 \Delta^{3}$ pairs of Ω are suitable.

It turns out that we will colour all of \hat{S}, which makes it easier to ensure that condition (iii) holds.
3.2 High Level Overview Our first step is to colour some of S, including all of \hat{S}. We do this in two phases. In the first one, we consider assigning each vertex of S a colour at random. We show by analysing this random procedure that there is a partial nice colouring of S such that every vertex of $S \backslash \hat{S}$ satisfies condition (iii) of Lemma 2.3. In the second phase, we finish colouring the vertices of \hat{S}. We use an iterative quasirandom procedure. In each iteration but the last, each vertex chooses a colour, from those which do not yield a conflict with any already coloured neighbour, uniformily at random. The last iteration has a similar flavour.

We then turn to colouring the vertices in the sets B_{i} and C_{i}. Our degree bounds imply that we could do this greedily. However, we will mimic the iterative approach
just discussed. We use this complicated colouring process because it allows us to ensure that condition (iv) of Lemma 2.3 holds for the colouring we obtain. At any point during the colouring process, Notbig ${ }_{i, j}$ is the set of vertices $v \in A_{i}$ such that v has either a G_{1}^{\prime}-neighbour $u \notin \operatorname{Big}_{i} \cup D_{i}$ that has colour j or a G_{2}^{\prime}-neighbour $u \notin \operatorname{Big}_{i} \cup D_{i}$ that has colour $j-1, j$ or $j+1$. The challenge is to construct a colouring such that $\operatorname{Notbig}_{i, j}$ remains small for every index i and every colour j.
3.3 Colouring Sparse Vertices As mentioned earlier, we colour sparse vertices in two phases. The first one provides a partial nice colouring of S satisfying condition (iii) of Lemma 2.3. The second one extends this nice colouring to all the vertices of \hat{S}, using an iterative quasi-random procedure.

We will need a lemma to bound the size of Notbig $_{i, j}$. We consider the following setting. We have a collection of at most Δ^{2} subsets of vertices. Each set contains at most Q vertices, and no vertex lies in more than $\Delta^{9 / 5}$ sets. A random experiment is conducted, where each vertex is marked with probability at most $\frac{1}{Q \cdot \Delta^{2 / 5}}$. We moreover assume that, for any set of $s \geq 1$ vertices, the probability that all are marked is at most $\left(\frac{1}{Q \cdot \Delta^{2 / 5}}\right)^{s}$. Note that this is in particular the case if the vertices are marked independently.

Lemma 3.3. Under the preceding hypothesis, the probability that at least $\Delta^{37 / 20}$ sets contain a marked vertex is at most $\exp \left(-\Delta^{1 / 20}\right)$.
Proof. For every $i \in\{1,2, \ldots, 9\}$, let E_{i} be the event that at least $\frac{1}{9} \Delta^{37 / 20}$ sets contain a marked member of T_{i}, where T_{i} is the set of vertices lying in between $\Delta^{(i-1) / 5}$ and $\Delta^{i / 5}$ sets. Note that if at least $\Delta^{37 / 20}$ sets contain at least one marked vertex, then at least one the events E_{i} must hold.

The total number of vertices in the sets being at most $\Delta^{2} Q$, we deduce that $\left|T_{i}\right| \leq \frac{\Delta^{2} Q}{\Delta^{(i-1) / 5}}$. Furthermore, if E_{i} holds then at least $\frac{1}{9} \Delta^{37 / 20-i / 5}$ vertices of T_{i} must be marked. Therefore,

$$
\begin{aligned}
\operatorname{Pr}\left(E_{i}\right) & \leq\binom{\Delta^{2} Q / \Delta^{(i-1) / 5}}{\frac{1}{9} \Delta^{37 / 20-i / 5}} \cdot\left(\frac{1}{Q \Delta^{2 / 5}}\right)^{\frac{1}{9} \Delta^{37 / 20-i / 5}} \\
& \leq\left(\frac{e \Delta^{2} Q / \Delta^{(i-1) / 5}}{\frac{1}{9} \Delta^{37 / 20-i / 5} \times Q \Delta^{2 / 5}}\right)^{\frac{1}{9} \Delta^{37 / 20-i / 5}} \\
& \leq\left(\frac{9 e}{\Delta^{1 / 20}}\right)^{\frac{1}{9} \Delta^{37 / 20-i / 5}}
\end{aligned}
$$

Since $\frac{1}{9} \Delta^{37 / 20-i / 5} \geq \frac{1}{9} \Delta^{1 / 20}$, the probability that E_{i} holds is at most $\frac{1}{9} \exp \left(-\Delta^{1 / 20}\right)$, and therefore the sought result follows.

3.3.1 First Step

Lemma 3.4. There exists a nice colouring of a subset H of S with colours in $\left\{1,2, \ldots, \Delta^{2}+1\right\}$ such that
(i) every uncoloured vertex v of $S \backslash \hat{S}$ has at least 2Δ colours appearing at least twice in $N_{S}(v):=$ $N_{G_{1}}(v) \cap S ;$
(ii) every vertex of S has at most $\frac{19}{20} \Delta^{2}$ coloured G_{1}^{*} neighbours;
(iii) for every index i and every colour j, the size of Notbig $_{i, j}$ is at most $\Delta^{19 / 10}$.
Proof. For convenience, let us set $C:=\Delta^{2}+1$. We use the following colouring procedure.

1. Each vertex of S is activated with probability $\frac{9}{10}$.
2. Each activated vertex is assigned a colour of $\{1,2, \ldots, C\}$, independently and uniformly at random.
3. A vertex which gets a colour creating a conflict - i.e. assigned to one of its G_{1}^{*}-neighbours, or at distance less than 2 of a colour assigned to one of its G_{2}^{*}-neighbours - is uncoloured.
We aim at applying the Lovász Local Lemma to prove that, with positive probability, the resulting colouring fulfils the three conditions of the lemma. Let v be a vertex of G. We let $E_{1}(v)$ be the event that v does not fulfil condition (i), and $E_{2}(v)$ be the event that v does not fulfil condition (ii). For each i, j, let $E_{3}(i, j)$ be the event that the size of Notbig ${ }_{i, j}$ exceeds $\Delta^{19 / 10}$. It suffices to prove that each of those events occurs with probability less than Δ^{-17}. Indeed, each event is mutually independent of all events involving vertices or dense sets at distance more than 4 in G_{1}^{*} or G_{1}^{\prime}. Moreover, each vertex of any set A_{i} has at most $\Delta^{5 / 4}$ external neighbours in G, and $\left|A_{i}\right| \leq \Delta^{2}+1$. Thus, each event is mutually independent of all but at most Δ^{16} other events. Consequently, the Lovász Local Lemma applies since $\Delta^{-17} \times \Delta^{16}<\frac{1}{4}$, and yields the sought result.

Hence, it only remains to prove that the probability of each event is at most Δ^{-17}. Let us start with $E_{2}(v)$. We define W to be the number of activated neighbours of v. Thus, $\operatorname{Pr}\left(E_{2}(v)\right) \leq \operatorname{Pr}\left(W>\frac{19}{20} \Delta^{2}\right)$. We set $m:=|N(v) \cap S|$, and we may assume that $m>\frac{19}{20} \Delta^{2}$. The random variable W is a binomial on m variables with probability $\frac{9}{10}$. In particular, its expected value $\mathbf{E}(W)$ is $\frac{9 m}{10}$. Applying the Chernoff Bound to W with $t=\frac{m}{20}$, we obtain that

$$
\begin{aligned}
\operatorname{Pr}\left(W>\frac{19}{20} \Delta^{2}\right) & \leq \operatorname{Pr}\left(|W-\mathbf{E}(W)|>\frac{m}{20}\right) \\
& \leq 2 \exp \left(-\frac{m^{2} \cdot 10}{400 \cdot 27 m}\right) \leq \Delta^{-17}
\end{aligned}
$$

since $\frac{19}{20} \Delta^{2}<m \leq \Delta^{2}$.
Let $v \in S \backslash \hat{S}$. We now bound $\operatorname{Pr}\left(E_{1}(v)\right)$. By Lemma 3.2, let Ω be a collection of $450 \Delta^{3}$ pairs of $G_{1^{-}}$ neighbours of v in S that are not adjacent in G_{1}^{*}. We consider the random variable X defined as the number of pairs of Ω whose members (i) are both assigned the same colour j, (ii) both retain that colour, and (iii) are the only two vertices in $N(v)$ that are assigned j. Thus, X is at most the number of colours appearing at least twice in $N_{S}(v)$. The probability that some non-adjacent pair of vertices u, w in $N(v)$ satisfies (i) is $\frac{9}{10} \cdot \frac{9}{10} \cdot \frac{1}{C}$. In total, the number of G_{1}^{*}-neighbours of v, u, w in H is at most $3 \Delta^{2}$, and the number of G_{2}^{*}-neighbours of u and w is at most 4Δ. Therefore, given that they satisfy (i), the vertices u and w also satisfy (ii) and (iii) with probability at least $\left(1-\frac{1}{C}\right)^{3 \Delta^{2}} \cdot\left(1-\frac{2}{C}\right)^{4 \Delta}$. Consequently,
$\mathbf{E}(X) \geq 450 \Delta^{3} \cdot \frac{81}{100 C} \exp \left(-\frac{3 \Delta^{2}}{C}\right) \exp \left(-\frac{8 \Delta}{C}\right)>3 \Delta$.
Hence, if $E_{1}(v)$ holds then X must be smaller than its expected value by at least Δ. But we assert that

$$
\begin{equation*}
\operatorname{Pr}(\mathbf{E}(X)-X>\Delta) \leq \Delta^{-17} \tag{3.1}
\end{equation*}
$$

which will yield the desired result.
To establish Equation (3.1), we apply Talagrand's Inequality. We set X_{1} to be the number of colours assigned to at least two vertices in $N(v)$, including both members of at least one pair in Ω, and X_{2} is the number of colours that (i) are assigned to both members of at least one pair in Ω, and (ii) create a conflict with one of their neighbours, or are also assigned to at least one other vertex in $N(v)$. Note that $X=X_{1}-X_{2}$. Therefore, by what precedes, if $E_{1}(v)$ holds then either X_{1} or X_{2} must differ from its expected value by at least $\frac{1}{2} \Delta$. Notice that

$$
\mathbf{E}\left(X_{2}\right) \leq \mathbf{E}\left(X_{1}\right) \leq C \cdot 450 \Delta^{3} \cdot \frac{1}{C^{2}} \leq 450 \Delta
$$

If $X_{1} \geq t$, then there is a set of at most $4 t$ trials whose outcomes certify this, namely the activation and colour assignment for t pairs of variables. Moreover, changing the outcome of any random trial can only affect X_{1} by at most 2 , since it can only affect whether the old colour and the new colour are counted or not. Thus Talangrand's Inequality applies and, since $\mathbf{E}\left(X_{1}\right) \geq \mathbf{E}(X)>3 \Delta$, we obtain that

$$
\begin{aligned}
\operatorname{Pr}\left(\left|X_{1}-\mathbf{E}\left(X_{1}\right)\right|>\frac{1}{2} \Delta\right) & \leq 4 \exp \left(-\frac{\Delta^{2}}{32 \cdot 64 \cdot 450 \Delta}\right) \\
& \leq \frac{1}{2} \Delta^{-17}
\end{aligned}
$$

Similarly, if $X_{2} \geq t$ then there is a set of at most $6 t$ trials whose outcomes certify this fact, namely the activation and colour assignment of t pairs of vertices and, for each of these pairs, the activation and colour assignment of a colour creating a conflict to a neighbour of a vertex of the pair. As previously, changing the outcome of any random trial can only affect X_{2} by at most 2. Therefore by Talagrand's Inequality, if $\mathbf{E}\left(X_{2}\right) \geq \frac{1}{2} \Delta$ then

$$
\begin{aligned}
\operatorname{Pr}\left(\left|X_{2}-\mathbf{E}\left(X_{2}\right)\right|>\frac{1}{2} \Delta\right) & \leq 4 \exp \left(-\frac{\Delta^{2}}{32 \cdot 96 \cdot 450 \Delta}\right) \\
& \leq \frac{1}{2} \Delta^{-17}
\end{aligned}
$$

If $\mathbf{E}\left(X_{2}\right)<\frac{1}{2} \Delta$, then we consider a binomial random variable that counts each vertex of $N_{S}(v)$ independently with probability $\frac{1}{4\left|N_{S}(v)\right|} \Delta$. We let X_{2}^{\prime} be the sum of this random variable and X_{2}. Note that $\frac{1}{4} \Delta \leq \mathbf{E}\left(X_{2}^{\prime}\right) \leq \frac{3}{4} \Delta$ by Linearity of Expectation. Moreover, observe that if $\left|X_{2}-\mathbf{E}\left(X_{2}\right)\right|>\frac{1}{2} \Delta$ then $\left|X_{2}^{\prime}-\mathbf{E}\left(X_{2}^{\prime}\right)\right|>\frac{1}{4} \Delta$. Therefore, by applying Talagrand's Inequality to X_{2}^{\prime} with $c=2, r=6$ and $t=\frac{1}{4} \Delta \in\left[60 c \sqrt{r \mathbf{E}\left(X_{2}^{\prime}\right)}, \mathbf{E}\left(X_{2}^{\prime}\right)\right]$, we also obtain in this case that

$$
\begin{aligned}
\operatorname{Pr}\left(\left|X_{2}-\mathbf{E}\left(X_{2}\right)\right|>\frac{1}{2} \Delta\right) & \leq \operatorname{Pr}\left(\left|X_{2}^{\prime}-\mathbf{E}\left(X_{2}^{\prime}\right)\right|>\frac{1}{4} \Delta\right) \\
& \leq 4 \exp \left(-\frac{\Delta^{2}}{16 \cdot 192 \cdot 3 \cdot \Delta}\right) \\
& \leq \frac{1}{2} \Delta^{-17} .
\end{aligned}
$$

Consequently, we infer that $\operatorname{Pr}(\mathbf{E}(X)-X>\Delta) \leq$ Δ^{-17}, as desired.

It only remains now to deal with $E_{3}(i, j)$. We use Lemma 3.3. For each i, every vertex of A_{i} has at most $\Delta^{5 / 4}$ external neighbours. Moreover, for each colour j, each such neighbour is activated and assigned a colour in $\{j-1, j, j+1\}$ with probability at most $\frac{9}{10} \cdot \frac{3}{C}<\frac{1}{\Delta^{5 / 4} \cdot \Delta^{2 / 5}}$. As these assignments are made independently, the conditions of Lemma 3.3 are fulfilled, so we deduce that the probability that $E_{3}(i, j)$ holds is at most $\exp \left(-\Delta^{1 / 20}\right) \leq \Delta^{-17}$. Thus, we obtained the desired upper bound on $\operatorname{Pr}\left(E_{3}(i, j)\right)$, which concludes the proof.
3.3.2 Second Step In the second step, we extend the partial colouring of S to all the vertices of \hat{S}. To do so, we need the following general lemma, that will also be used in the next subsection to colour the vertices of the sets $B_{i} \cup C_{i}$. Its proof is long and technical, and we omit it (the reader may consult the associated research report [10] for details).

Lemma 3.5. Let F be a subset of V^{*} with a partial nice colouring, and H be a set of uncoloured vertices of F. For each vertex u of H, let $L(u)$ be the colours available to colour u, that is that create no conflict with the already coloured vertices of $F \cup H$. We assume that for every vertex $u,|L(u)| \geq 16 \Delta^{33 / 20}$ and $|L(u)| \geq$ $\delta_{H}^{1}(u)+6 \Delta$.
Then, the partial nice colouring of F can be extended to a nice colouring of H such that for every index $i \in\{1,2, \ldots, \ell\}$ and every colour j, the size of $\operatorname{Notbig}_{i, j}$ increases by at most $\Delta^{19 / 10}$.

Consider a partial nice colouring of S obtained in the first step. In particular, \mid Notbig $_{i, j} \mid \leq \Delta^{19 / 10}$. We wish to ensure that every vertex of \hat{S} is coloured. This can be done greedily, but to be able to continue the proof we need to have more control on the colouring. We shall apply Lemma 3.5 to the set H of uncoloured vertices in \hat{S}. For each vertex $u \in H$, the list $L(u)$ is initialised as the list of colours that can be assigned to u without creating any conflict. By Lemmas 3.1 and $3.4(i i),|L(u)| \geq \frac{1}{20} \Delta^{2}-4 \Delta \geq 16 \Delta^{33 / 20}$.

Suppose that u is in no set Big_{i}. Then $\delta_{S}^{1}(u) \leq$ $\operatorname{deg}_{S}^{1}(u) \leq \Delta^{2}-90 \Delta$, and u has at most ΔG_{2}^{*} neighbours. Hence, we infer that $|L(u)| \geq \delta_{H}^{1}(u)+88 \Delta$. Assume now that u belongs to some set Big_{i}. By Lemma 3.1 (i) and (ii), we have $\delta^{1}(u) \leq \Delta^{2}-8 \Delta$ and $\delta^{2}(u) \leq \Delta$. So, $|L(u)| \geq \delta_{H}^{1}(u)+8 \Delta-2 \Delta=\delta_{H}^{1}(u)+6 \Delta$.

Therefore, by Lemma 3.5 we can extend the partial nice colouring of S to \hat{S} such that $\left|\operatorname{Notbig}_{i, j}\right| \leq 2 \Delta^{19 / 10}$ for every index i and every colour j.
3.4 Colouring the Sets B_{i} and C_{i} Let H := $\bigcup_{i=1}^{\ell}\left(B_{i} \cup C_{i}\right)$. At this stage, the vertices of H are uncoloured. We first apply Lemma 3.5 to extend the partial nice colouring of S to the vertices of H in such a way that Notbig $_{i, j}$ does not grow too much, for every index i and colour j. Next, we will show that the good colouring derived from this nice colouring satisfies the conditions of Lemma 2.3.

For each vertex u of H, let $L(u)$ be the lists of colours that would not create any conflict with the already coloured vertices. By Lemma 3.1(iii), $\delta^{1}(u) \leq \frac{3}{4} \Delta^{2}$. Hence, $|L(u)| \geq \frac{1}{4} \Delta^{2}+\delta_{H}^{1}(u)-4 \Delta \geq$ $\max \left(16 \Delta^{33 / 20}, \delta_{H}^{1}(u)+6 \Delta\right)$.

Therefore, by Lemma 3.5, we extend the partial nice colouring of the vertices of S to the vertices of $\bigcup_{i=1}^{\ell}\left(B_{i} \cup C_{i}\right)$. Moreover, for each index i and each colour j, the size of each $\operatorname{Notbig}_{i, j}$ is at most $3 \Delta^{19 / 10}$.

Consider now the partial good colouring of V_{1} associated to this nice colouring. Let us show that it satisfies the conditions of Lemma 2.3. By the definition, it satisfies conditions (i) and (ii). Condition (iii) follows
from Lemma 3.4. Hence, it only remains to show that condition (iv) holds.

Fix an index i and a colour j. Recall that Big_{i} is a clique, so there is at most one vertex of Big_{i} of each colour. Consequently, the number of vertices of A_{i} with a G_{1}-neighbour in Big_{i} coloured j is at most $\max \left(2 \cdot \frac{1}{4} \Delta^{2}, \frac{3}{4} \Delta^{2}\right)=\frac{3}{4} \Delta^{2}$, by Lemma 2.1(c). Besides, the number of vertices of A_{i} with a G_{2}-neighbour in Big_{i} coloured $j-1$ or $j+1$ is at most 4Δ. Finally, the number of vertices of A_{i} with either a G_{1}-neighbour not in $\operatorname{Big}_{i} \cup D_{i}$ coloured j, or a G_{2}-neighbour not in $\operatorname{Big}_{i} \cup D_{i}$ coloured $j-1, j$ or $j+1$ is at most $\left|\operatorname{Notbig}_{i, j}\right| \leq 3 \Delta^{19 / 10}$. Thus, all together, the number of vertices of A_{i} with a G_{1}-neighbour not in $B_{i} \cup C_{i}$ coloured j, or a $G_{2^{-}}$ neighbour not in $B_{i} \cup C_{i}$ coloured $j-1$ or $j+1$ is at most

$$
\frac{3}{4} \Delta^{2}+3 \Delta^{19 / 10}+4 \Delta \leq \frac{4}{5} \Delta^{2}
$$

This concludes the proof of Lemma 2.3.

4 The Proof of Lemma 2.4

We consider a good colouring of V satisfying the conditions of Lemma 2.3. The procedure we apply is comprised of two phases. In the first phase, a random permutation of colours is assigned to the vertices of A_{i}. In doing so, we might create two kinds of conflicts: a vertex of A_{i} coloured j might have an external G_{1}-neighbour coloured j, or a G_{2}-neighbour coloured $j-1$ or $j+1$. We shall deal with these conflicts in a second phase. To be able to do so, we first ensure that the colouring obtained in the first phase fulfils some properties.

Proposition 4.1.

$$
\left|A_{i}\right|+\left|B_{i}\right|+\frac{1}{2}\left|V\left(M_{i}\right)\right| \leq \Delta^{2}+1
$$

Proof. By the maximality of M_{i}, for every edge $e=x y$ of M_{i} there is at most one vertex v_{e} of K_{i} that is adjacent to both x and y in $\overline{H_{i}}$. Hence, every edge e of M_{i} has an endvertex $n(e)$ that is adjacent in H_{i} to every vertex of K_{i} except possibly one, called $x(e)$. By Lemmas 2.1 and 2.2,

$$
\left|A_{i}\right|+\left|B_{i}\right| \geq \Delta^{2}-8000 \Delta-2.10^{3} \Delta \geq 10^{3} \Delta>\left|M_{i}\right|
$$

So there exists a vertex $v \in A_{i} \cup B_{i} \backslash \cup_{e \in M_{i}} x(e)$. The vertex v is adjacent in G_{1} to all the vertices of K_{i} (except itself) and all the vertices $n(e)$ for $e \in M_{i}$. So

$$
\left|A_{i}\right|+\left|B_{i}\right|-1+\frac{1}{2}\left|V\left(M_{i}\right)\right| \leq \operatorname{deg}^{1}(v) \leq \Delta^{2}
$$

4.1 Phase 1 For each set A_{i}, we choose a subset of $a_{i}:=\left|A_{i}\right|$ colours as follows. First, we exclude all the colours that appear on the vertices of $B_{i} \cup C_{i}$. Moreover, if a colour j is assigned to at least three pairs of vertices matched by M_{i}, not only do we exclude the colour j but also the colours $j-1$ and $j+1$. By Proposition 4.1 and because every edge of M_{i} is monochromatic by Lemma 2.3(ii), we infer that at least a_{i} colours have not been excluded. Then we assign a random permutation of those colours to the vertices of A_{i}. We let Temp ${ }_{i}$ be the subset of vertices of A_{i} with an external $G_{1^{-}}$ neighbour of the same colour, or a G_{2}-neighbour with a colour at distance less than 2 .

Lemma 4.1. With positive probability, the following hold.
(i) For each $i,\left|\mathrm{Temp}_{i}\right| \leq 3 \Delta^{5 / 4}$;
(ii) for each index i and each colour j, at most $\Delta^{19 / 10}$ vertices of A_{i} have a G_{1}-neighbour in $\cup_{k \neq i} A_{k}$ coloured j or a G_{2}-neighbour in $\cup_{k} A_{k}$ coloured $j-1$ or $j+1$.

Proof. We use the Lovász Local Lemma. For every index i, we let $E_{1}(i)$ be the event that $\left|\mathrm{Temp}_{i}\right|$ is greater than $3 \Delta^{5 / 4}$. For each index i and each colour j, we define $E_{2}(i, j)$ to be the event that condition (ii) is not fulfilled. Each event is mutually independent of all events involving dense sets at distance greater than 2, so each event is mutually independent of all but at most Δ^{9} other events. According to the Lovász Local Lemma, it is enough to show that each event has probability at most Δ^{-10}, since $\Delta^{9} \times \Delta^{-10}<\frac{1}{4}$.

Our first goal is to upper bound $\operatorname{Pr}\left(E_{1}(i)\right)$. We may assume that both the colour assigments for all cliques other than A_{i}, and the choice of the a_{i} colours to be used on A_{i} have already been made. Thus it only remains to choose a random permutation of those a_{i} colours onto the vertices of A_{i}. Since every vertex $v \in A_{i}$ has at most $\Delta^{5 / 4}$ external neighbours and ΔG_{2}-neighbours, the probability that $v \in \operatorname{Temp}_{i}$ is at most $\left(\Delta^{5 / 4}+4 \Delta\right) / a_{i}$. So we deduce that $\mathbf{E}\left(\left|\operatorname{Temp}_{i}\right|\right) \leq \Delta^{5 / 4}+4 \Delta$. We define a binomial random variable B that counts each vertex of A_{i} independently with probability $\Delta^{5 / 4} /\left(2 a_{i}\right)$. We set $X:=\left|\operatorname{Temp}_{i}\right|+B$. By Linearity of Expectation,

$$
\frac{1}{2} \Delta^{5 / 4} \leq \mathbf{E}(X)=\mathbf{E}\left(\left|\operatorname{Temp}_{i}\right|\right)+\frac{1}{2} \Delta^{5 / 4} \leq 2 \Delta^{5 / 4}
$$

Moreover, if $\left|\mathrm{Temp}_{i}\right|>3 \Delta^{5 / 4}$ then $\left|\mathrm{Temp}_{i}\right|-$ $\mathbf{E}\left(\left|\operatorname{Temp}_{i}\right|\right)>\Delta^{5 / 4}$, and hence $X-\mathbf{E}(X)>\frac{1}{2} \Delta^{5 / 4}$. We now apply McDiarmid's Inequality to show that X is concentrated. Note that if $\left|\mathrm{Temp}_{i}\right| \geq s$, then the colours to $2 s$ vertices (that is, s members of Temp_{i}
and one neighbour for each) certify that fact. Moreover, switching the colours of two vertices in A_{i} may only affect whether those two vertices are in Temp_{i}, and whether at most four vertices with a colour at distance less than 2 are in Temp_{i}. So we may apply McDiarmid's Inequality to X with $c=6, r=2$ and $t=\frac{1}{2} \Delta^{5 / 4} \in[60 c \sqrt{r \mathbf{E}(X)}, \mathbf{E}(X)]$. We deduce that the probability that the event $E_{1}(i)$ holds is at most

$$
\begin{aligned}
& \operatorname{Pr}\left(|X-\mathbf{E}(X)|>\frac{1}{2} \Delta^{5 / 4}\right) \\
< & 4 \exp \left(-\frac{\Delta^{5 / 2}}{4 \times 32 \times 36 \times 2 \Delta^{5 / 4}}\right) \\
< & \Delta^{-10}
\end{aligned}
$$

We now upper bound $\operatorname{Pr}\left(E_{2}(i, j)\right)$. To this end, we use Lemma 3.3. Recall that the vertices of A_{i} get different colours. Every vertex $v \in A_{i}$ has at most $\Delta^{5 / 4}$ external neighbours, and ΔG_{2}-neighbours. We set $Q:=\Delta^{5 / 4}+\Delta$. We let $S(v)$ be the set of all vertices that are either external G_{1}-neighbours of v, or G_{2}-neighbours of v. Hence, $|S(v)| \leq Q$. Note that each vertex is in at most $\Delta^{5 / 4}$ sets $S(v)$ for $v \in A_{i}$. Each vertex of a set $S(v)$ is assigned a colour in $\{j-1, j, j+1\}$ with probability at most

$$
\max _{k} \frac{3}{a_{k}}<\frac{1}{3 Q \times \Delta^{2 / 5}}
$$

because $\min a_{k} \geq \Delta^{2}-9000 \Delta^{7 / 4}$ by Fact 2.1. Moreover, at most three vertices in each set A_{k} are assigned a colour in $\{j-1, j, j+1\}$. As the random permutations for different cliques are independent, Lemma 3.3 implies that the probability that more than $\Delta^{37 / 20}$ vertices of A_{i} have an external G_{1}-neighbour in some A_{k} coloured j, or a G_{2}-neighbour in some A_{k} coloured $j-1, j$ or $j+1$ is at most $\exp \left(-\Delta^{1 / 20}\right)<\Delta^{-10}$. This concludes the proof.
4.2 Phase 2 We consider a colouring γ satisfying the conditions of Lemma 4.1. For each set A_{i} and each vertex $v \in \mathrm{Temp}_{i}$ we let $\mathrm{Swappable}_{v}$ be the set of vertices u such that
(a) $u \in A_{i} \backslash \mathrm{Temp}_{i}$;
(b) $\gamma(u)$ does not appear on an external G_{1}-neighbour of v;
(c) $\gamma(v)$ does not appear on an external G_{1}-neighbour of u;
(d) $\gamma(u)-1$ and $\gamma(u)+1$ do not appear on a $G_{2^{-}}$ neighbour of v;
(e) $\gamma(v)-1$ and $\gamma(v)+1$ do not appear on a $G_{2}{ }^{-}$ neighbour of u.

Lemma 4.2. For every $v \in \mathrm{Temp}_{i}$, the set $\operatorname{Swappable}_{v}$ contains at least $\frac{1}{10} \Delta^{2}$ vertices.

Proof. Let us upper bound the number of vertices that are not in Swappable e_{v}. By Lemma $4.1(i)$, at most $3 \Delta^{5 / 4}$ vertices of A_{i} violate condition (a) and at most $\Delta^{5 / 4}$ vertices violate condition (b) by the definition of A_{i}. As v has at most ΔG_{2}-neighbours, the number of vertices violating condition (d) is at most 2Δ. According to Lemma 2.3(iv), the number of vertices of A_{i} violating conditions (c) or (e) because of a neighbour not in $\left(\cup_{k=1}^{\ell} A_{k}\right) \cup\left(B_{i} \cup C_{i}\right)$ is at most $\frac{4}{5} \Delta^{2}$. Moreover, by the way we chose the a_{i} colours for A_{i}, the number of vertices violating condition (e) because of a neighbour in $B_{i} \cup C_{i}$ is at most 10Δ. Finally, the number of vertices violating conditions (c) or (e) because of a colour assigned during Phase 1 is at most $\Delta^{19 / 10}$ thanks to Lemma 4.1(ii). Therefore, we deduce that the size of Swappable $_{v}$ is at least

$$
\left|A_{i}\right|-\frac{4}{5} \Delta^{2}-\Delta^{19 / 10}-4 \Delta^{5 / 4}-12 \Delta-1 \geq \frac{1}{10} \Delta^{2}
$$

as $\left|A_{i}\right| \geq \Delta^{2}-9000 \Delta^{\frac{7}{4}}$ by Fact 2.1.
For each index i and each vertex $v \in \mathrm{Temp}_{i}$, we choose 100 uniformly random members of Swappable $_{v}$. These vertices are called candidates of v.

Definition 4.1. A candidate u of v is unkind if either
(a) u is a candidate for some other vertex;
(b) v has an external neighbour w that has a candidate w^{\prime} with the same colour as u;
(c) v has a G_{2}-neighbour w that has a candidate w^{\prime} coloured $\gamma(u)-1, \gamma(u)$ or $\gamma(u)+1$;
(d) v has an external neighbour w that is a candidate for exactly one vertex w^{\prime}, with $\gamma\left(w^{\prime}\right)=\gamma(u)$;
(e) v has a G_{2}-neighbour w that is a candidate for exactly one vertex w^{\prime}, that is coloured $\gamma(u)-1, \gamma(u)$ or $\gamma(u)+1$;
$(f) u$ has an external neighbour w that has a candidate w^{\prime} with the same colour as v;
(g) u has a G_{2}-neighbour w that has a candidate w^{\prime} coloured $\gamma(v)-1, \gamma(v)$ or $\gamma(v)+1$;
(h) u has an external neighbour w that is a candidate for a vertex w^{\prime} with the same colour as v; or
(i) u has a G_{2}-neighbour w that is a candidate for a vertex w^{\prime} coloured $\gamma(v)-1, \gamma(v)$ or $\gamma(v)+1$.

A candidate of v is kind if it is not unkind.
Lemma 4.3. With positive probability, for each index i, every vertex of Temp_{i} has a kind candidate.

We choose candidates satisfying the preceding lemma. For each vertex $v \in \mathrm{Temp}_{i}$ we swap the colour of v and one of its kind candidates. The obtained colouring is the desired one. So to conclude the proof of Lemma 2.4, it only remains to prove Lemma 4.3.

Proof of Lemma 4.3. For every vertex v in some Temp_{i}, let $E_{1}(v)$ be the event that v does not have a kind candidate. Each event is mutually independent of all events involving dense sets at distance greater than 2 . So each event is mutually independent of all but at most Δ^{9} other events. Hence, we shall prove that the probability of each event is at most Δ^{-10}, and so the conclusion will follow from the Lovász Local Lemma since $\Delta^{-10} \cdot \Delta^{9}<\frac{1}{4}$.

Observe that the probability that a particular vertex of Swappable ${ }_{v}$ is chosen is $100 / \mid$ Swappable $_{v} \mid$, which is at most $1000 \Delta^{-2}$.

We wish to upper bound $\operatorname{Pr}\left(E_{1}(v)\right)$ for an arbitrary vertex $v \in \operatorname{Temp}_{i}$, so we can assume that all vertices but v have already chosen candidates. By Lemma 4.1(i), the number of vertices that satisfy condition (a) of Definition 4.1 is at most $300 \Delta^{5 / 4}$. Note that the vertex v has at most $\Delta^{5 / 4}$ external neighbours, each having at most 100 candidates. Since each colour appears on at most one member of Swappable $_{v}$, we deduce that the number of vertices satisfying one of the conditions (b) and (d) is at most $101 \Delta^{5 / 4}$. Similarly, the number of vertices satisfying one of the conditions (c) and (e) is at most 303Δ.

We deal now with the remaining four conditions, starting with condition (f). The number of vertices of A_{i} that satisfy condition (f) is at most the number of edges with an endvertex in A_{i} and an endvertex in A_{k} with $k \neq i$, and such that the external endvertex has chosen a candidate with the colour of v. For each vertex $w \in \cup_{k \neq i} A_{k}$, we let N_{w} be the number of G_{1}-neighbours of w in A_{i}. So, $N_{w} \leq \Delta^{5 / 4}$. Note that $\sum N_{w} \leq 8000 \Delta^{3}$ by Lemma $2.1(b)$. We define the random variable F_{w} to be N_{w} if w has a candidate with the colour of v, and 0 otherwise. Thus, the number of vertices of A_{i} that satisfy condition (f) is at most the sum σ of the variables F_{w} for $w \in \cup_{k \neq i} A_{k}$. We aim at showing that

$$
\begin{equation*}
\operatorname{Pr}\left(\sigma>2 \Delta^{3 / 2}\right)<\frac{1}{8} \Delta^{-10} \tag{4.2}
\end{equation*}
$$

Since each vertex in some set Temp_{k} chooses its candidates independently, the variables F_{w} are independent.

For each $r \in\left\{0,1, \ldots,\left\lceil\log _{2}\left(\Delta^{5 / 4}\right)\right\rceil\right\}$, let S_{r} be the set of vertices w of $\cup_{k \neq i} A_{k}$ such that $2^{r-1}<N_{w} \leq 2^{r}$. So,

$$
\sigma \leq \sum_{r=0}^{\left\lceil\log _{2}\left(\Delta^{5 / 4}\right)\right\rceil} \sum_{w \in S_{r}} F_{w} \leq \sum_{r=0}^{\left\lceil\log _{2}\left(\Delta^{5 / 4}\right)\right\rceil} 2^{r} \sigma_{r}
$$

where $\sigma_{r}:=\left|\left\{w \in S_{r}: F_{w} \neq 0\right\}\right|$. Consequently, to prove (4.2) it suffices to show that for every index r,

$$
\operatorname{Pr}\left(\sigma_{r}>t\right)<\frac{\Delta^{-10}}{8\left(\left\lceil\log _{2}\left(\Delta^{5 / 4}\right)\right\rceil+1\right)}
$$

where $t:=\frac{2 \Delta^{3 / 2}}{2^{r}\left(\left\lceil\log _{2}\left(\Delta^{5 / 4}\right)\right\rceil+1\right)}$.
Fix an index r. As the variables F_{w} are independent, the probability that σ_{r} is more than t is no more than the probability that the binomial random variable $\operatorname{BIN}(n, p)$ with $n:=\frac{8000}{2^{r-1}} \Delta^{3}$ and $p:=1000 \Delta^{-2}$ is more than t. Therefore, we deduce from Chernoff's Bound that

$$
\begin{aligned}
\operatorname{Pr}\left(\sigma_{r}>t\right) & \leq \operatorname{Pr}\left(\operatorname{BIN}(n, p)-n p>\frac{t}{2}\right) \\
& <2 \exp \left(\frac{t}{2}-\left(n p+\frac{t}{2}\right) \ln \left(1+\frac{t}{2 n p}\right)\right) \\
& <\frac{\Delta^{-10}}{8\left(\left\lceil\log _{2}\left(\Delta^{5 / 4}\right)\right\rceil+1\right)}
\end{aligned}
$$

as wanted.
A similar argument shows that, with probability at least $1-\frac{1}{8} \Delta^{-10}$, at most $2 \Delta^{3 / 2}$ vertices of A_{i} satisfy condition (g).

We consider now condition (h). A vertex u of A_{i} satisfies condition (h) if it has an external G_{1}-neighbour that was chosen as a canditate for a vertex with the same colour as v. We actually consider the number of edges with an endvertex in A_{i} and the other in some A_{k} with $k \neq i$, and such that the endvertex not in A_{i} is a candidate for a vertex with the same colour as v. We express this as the sum of several random variables.

Recall that N_{w} is the number of G_{1}-neighbours of w in A_{i}, for every $w \in \cup_{k \neq i} A_{k}$. So, $N_{w} \leq \Delta^{5 / 4}$. We define X_{w} to be N_{w} if w is a candidate for a vertex with the colour of v, and 0 otherwise. Thus, the probability that $X_{w}=N_{w}$ is at most $1000 \Delta^{-2}$. The number of vertices of A_{i} satisfying condition (h) is at most the sum τ of the variables X_{w} for $w \in \cup_{k \neq i} A_{k}$. Our aim is to show that

$$
\begin{equation*}
\operatorname{Pr}\left(\tau>2 \Delta^{3 / 2}\right)<\frac{1}{8} \Delta^{-10} \tag{4.3}
\end{equation*}
$$

Recall that

$$
S_{r}=\left\{w \in \cup_{k \neq i} A_{k}: 2^{r-1}<N_{w} \leq 2^{r}\right\}
$$

for every $r \in\left\{0,1, \ldots,\left\lceil\log _{2}\left(\Delta^{5 / 4}\right)\right\rceil\right\}$. Hence,

$$
\tau \leq \sum_{r=0}^{\left\lceil\log _{2}\left(\Delta^{5 / 4}\right)\right\rceil} \sum_{w \in S_{r}} X_{w} \leq \sum_{r=0}^{\left\lceil\log _{2}\left(\Delta^{5 / 4}\right)\right\rceil} 2^{r} \tau_{r}
$$

where $\tau_{r}:=\left|\left\{w \in S_{r}: X_{w} \neq 0\right\}\right|$. Consequently, to prove (4.3) it suffices to show that for every index r,

$$
\begin{equation*}
\operatorname{Pr}\left(\tau_{r}>t\right)<\frac{\Delta^{-10}}{8\left(\left\lceil\log _{2}\left(\Delta^{5 / 4}\right)\right\rceil+1\right)} \tag{4.4}
\end{equation*}
$$

where $t:=\frac{2 \Delta^{3 / 2}}{2^{r}\left(\left\lceil\log _{2}\left(\Delta^{5 / 4}\right)\right\rceil+1\right)}$.
Let us fix an index r. Observe that τ_{r} is at most $100 \sum_{k \neq i} Z_{r}^{k}$ where each Z_{r}^{k} is a zero-one random variable, which is 1 if there is a vertex of $S_{r} \cap A_{k}$ that is a candidate for a vertex with the same colour as v, and 0 otherwise. In particular, $Z_{r}^{k}=1$ with probability at most $1000\left|S_{r} \cap A_{k}\right| \Delta^{-2}$. Moreover, if $\tau_{r}>t$ then $\sum_{k \neq i} Z_{r}^{k}>\frac{t}{100}$. Let $R_{r}:=2^{1-r} \cdot 8000 \Delta^{3}$. By Lemma 2.1(b), for every $k \neq i$ the size of $S_{r} \cap A_{k}$ is at most $M_{r}:=\min \left(\Delta^{2}, R_{r}\right)$. We set

$$
T_{m}:=\left\{k \neq i: 2^{m-1} \leq\left|S_{r} \cap A_{k}\right| \leq 2^{m}\right\}
$$

for every integer $m \in\left\{0,1, \ldots,\left\lceil\log _{2}\left(M_{r}\right)\right\rceil\right\}$. Hence, $\left|T_{m}\right| \leq 2^{2-m-r} \cdot 8000 \Delta^{3}$, and

$$
\tau_{r} \leq 100 \sum_{m=0}^{\left\lceil\log _{2}\left(M_{r}\right)\right\rceil} \sum_{k \in T_{m}} Z_{r}^{k}
$$

Let us fix an index m. The variables Z_{r}^{k} for $k \in T_{m}$ are independent zero-one random variables, each being 1 with probability at most $2^{m} \cdot 1000 \Delta^{-2}$. Observe that if $2^{m} \geq \Delta^{2} / 1000$, then $\left|T_{m}\right| \leq 32 \cdot 10^{6} \cdot 2^{-r} \Delta$ and hence $\tau_{r} \leq t$ so that (4.4) holds. Thus we assume in the sequel that $2^{m} \leq \Delta^{2} / 1000$. We define Y_{m} to be the sum of $2^{2-m-r} \cdot 8000 \Delta^{3}$ independent zero-one random variables, each being 1 with probability $2^{m} \cdot 1000 \Delta^{-2}$. Thus, $\sum_{k \in T_{m}} Z_{r}^{k} \leq Y_{m}$. The expected value of Y_{m} is

$$
\mathbf{E}\left(Y_{m}\right)=32 \cdot 10^{6} \cdot 2^{-r} \Delta<\Delta^{3 / 2}
$$

Setting $t^{\prime}:=\frac{t}{100 \cdot\left(\left\lceil\log _{2}\left(M_{r}\right)\right\rceil+1\right)}$, we deduce from Chernoff's Bound that

$$
\begin{aligned}
& \operatorname{Pr}\left(Y_{m}-\mathbf{E}\left(Y_{m}\right)>\frac{t^{\prime}}{2}\right) \\
< & 2 \exp \left(\frac{t^{\prime}}{2}-\ln \left(1+\frac{t^{\prime}}{2 \mathbf{E}\left(Y_{m}\right)}\right)\left(\mathbf{E}\left(Y_{m}\right)+\frac{t^{\prime}}{2}\right)\right) \\
< & \frac{\Delta^{-10}}{8\left(\left\lceil\log _{2}\left(\Delta^{5 / 4}\right)\right\rceil+1\right)\left(\left\lceil\log _{2}\left(M_{r}\right)\right\rceil+1\right)} .
\end{aligned}
$$

This implies (4.4), which in turn implies (4.3), as desired.

A similar argument shows that the probability that more than $\Delta^{3 / 2}-200 \Delta$ vertices of A_{i} satisfy condition (i) because of an external G_{2}-neighbour is at most $\frac{1}{8} \Delta^{-10}$. Moreover, at most 200Δ vertices satisfy condition (i) because of an internal G_{2}-neighbour.

Therefore, with probability at least $1-\frac{1}{2} \Delta^{-10}$ the number of unkind members of Swappable ${ }_{v}$ is at most

$$
8 \Delta^{3 / 2}+300 \Delta^{5 / 4}+101 \Delta^{5 / 4}+303 \Delta<\Delta^{7 / 4}
$$

In this case, the probability that no candidate is kind is at most

$$
\left(\frac{\Delta^{7 / 4}}{\Delta^{2} / 10}\right)^{100}<\frac{1}{2} \Delta^{-10}
$$

Consequently, the probability that $E_{1}(v)$ holds is at most $\frac{1}{2} \Delta^{-10}+\frac{1}{2} \Delta^{-10}=\Delta^{-10}$, as desired. This concludes the proof.

References

[1] T. Calamoneri. The $L(h, k)$-Labeling Problem: A Survey, (2004). Available from: http://www.dsi.uniroma1.it/~calamo/survey.html
[2] G. J. Chang and D. Kuo, The L(2, 1)-labeling problem on graphs, SIAM J. Discr. Math., 9 (1996), pp. 309316.
[3] J. P. Georges, D. W. Mauro and M. A. Whittlesey, Relating path coverings to vertex labelings with a condition at distance two, Discrete Math., 135 (1994), pp. 103-111.
[4] D. Gonçalves, On the L(p,1)-labelling of graphs, Discrete Math., to appear.
[5] J. R. Griggs and D. Král', Graph labellings with variable weights, a survey, Submitted.
[6] J. R. Griggs and R. K. Yeh, Labeling graphs with a condition at distance two, SIAM J. Discr. Math., 11 (1992), pp. 585-595.
[7] T. K. Jonas, Graph coloring analogues with a condition at distance two: $L(2,1)$-labelings and list λ-labelings, Ph.D. Thesis, University of South Carolina, 1993.
[8] D. Král' and R. Škrekovski, A theorem about the channel assignment, SIAM J. Discr. Math., 16 (2003), pp. 426-437.
[9] M. Molloy and B. Reed, Graph colouring and the probabilistic method. Algorithms and Combinatorics, 23. Springer-Verlag, Berlin, 2002.
[10] F. Havet, B. Reed and J.-S. Sereni, $L(2,1)$ labelling of graphs, ITI-Series. Available from: http://kam.mff.cuni.cz/~sereni/
[11] R. K. Yeh, A survey on labeling graphs with a condition at distance two, Discrete Math., 306 (2006), no. 12, 1217-1231.

[^0]: *This work is partially supported by the European project IST fet Aeolus and the Egide eco-net project 16305 SB . The first and second author thank the Department of Applied Mathematics kam-dimatia and the Institute for Theoretical Computer Science (ITI) of Charles University for their hospitality during their stay in Prague, when part of this research was conducted.
 ${ }^{\dagger}$ Projet Mascotte, I3S (CNRS/UNSA)-INRIA, Sophia Antipolis, France.
 \ddagger School of Computer Science, McGill University, Montreal, Québec, Canada.
 ${ }^{\S}$ Institute for Theoretical Computer Science ITI, and Department of Applied Mathematics Kam, Charles University, Prague, Czech Republic.

