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Abstract

An L(2, 1)-labelling of a graph is a function f from the vertex

set to the positive integers such that |f(x) − f(y)| ≥ 2 if

dist(x, y) = 1 and |f(x) − f(y)| ≥ 1 if dist(x, y) = 2, where

dist(x, y) is the distance between the two vertices x and y

in the graph G. The span of an L(2, 1)-labelling f is the

difference between the largest and the smallest labels used

by f plus 1. In 1992, Griggs and Yeh conjectured that every

graph with maximum degree ∆ ≥ 2 has an L(2, 1)-labelling

with span at most ∆2 + 1. By settling this conjecture for

∆ sufficiently large, we prove the existence of a constant C

such that the span of any graph of maximum degree ∆ is at

most ∆2 + C.

1 Introduction

In the channel assignment problem, transmitters at
various nodes within a geographic territory must be
assigned channels or frequencies in such a way as to
avoid interferences. A model for the channel assignment
problem developed wherein channels or frequencies are
represented with integers, “close” transmitters must be
assigned different integers and “very close” transmitters
must be assigned integers that differ by at least 2.
This quantification led to the definition of an L(p, q)-
labelling of a graph G = (V,E) as a function f
from the vertex set to the positive integers such that
|f(x)− f(y)| ≥ p if dist(x, y) = 1 and |f(x)− f(y)| ≥ q
if dist(x, y) = 2, where dist(x, y) is the distance between
the two vertices x and y in the graph G. The notion of
L(2, 1)-labelling first appeared in 1992 [6]. Since then, a
large number of articles has been published devoted to
the study of L(p, q)-labellings. We refer the interested
reader to the surveys of Calamoneri [1] and Yeh [11].
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Generalisations of L(p, q)-labellings in which for
each i ≥ 1, a minimum gap of pi is required for
channels assigned to vertices at distance i, have also
been studied (see for example the recent survey of
Griggs and Král’ [5]).

In the context of the channel assignment problem,
the main goal is to minimise the number of channels
used. Hence, we are interested in the span of an L(p, q)-
labelling f , which is the difference between the largest
and the smallest labels of f plus 1. The λp,q-number
of G is λp,q(G), the minimum span over all L(p, q)-
labellings of G. In general, determining the λp,q-number
of a graph is NP-hard [3]. In their seminal paper, Griggs
and Yeh [6] observed that a greedy algorithm yields
λ2,1(G) ≤ ∆2+2∆+1, where ∆ is the maximum degree
of the graph G. Moreover, they conjectured that this
upper bound can be decreased to ∆2 + 1.

Conjecture 1.1. ([6]) For every ∆ ≥ 2 and every
graph G of maximum degree ∆,

λ2,1(G) ≤ ∆2 + 1.

This upper bound would be tight: there are graphs with
degree ∆, diameter 2 and ∆2 + 1 vertices, namely the
5-cycle, the Petersen graph and the Hoffman-Singleton
graph. Thus, their square is a clique of order ∆2 +1, so
the span of every L(2, 1)-labelling is at least ∆2 + 1.

Jonas [7] improved slightly on Griggs and Yeh’s
upper bound by showing that every graph of maximum
degree ∆ admits a (2, 1)-labelling with span at most
∆2+2∆−3. Subsequently, Chang and Kuo [2] provided
the upper bound ∆2 + ∆ + 1 which remained the best
general upper bound for about a decade. Král’ and
Škrekovski [8] brought this upper bound down by 1 as
the corollary of a more general result. And, using the
algorithm of Chang and Kuo [2], Gonçalves [4] decreased
this bound by 1 again, thereby obtaining the upper
bound ∆2 +∆−1. We prove the following approximate
version of Conjecture 1.1.

Theorem 1.1. There exists a constant C such that for
every integer ∆ and every graph of maximum degree ∆,

λ2,1(G) ≤ ∆2 + C.

This result is obtained by combining any of the previ-
ously mentionned upper bounds with the next theorem,
which settles Conjecture 1.1 for sufficiently large ∆.
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Theorem 1.2. There is a ∆0 such that for every graph
G of maximum degree ∆ ≥ ∆0,

λ2,1(G) ≤ ∆2 + 1.

Actually, we consider a more general setup. We
are given a graph G1 with vertex-set V , along with
a spanning subgraph G2. We want to assign integers
from {1, 2, . . . , k} to the elements of V so that vertices
adjacent in G1 receive different colours and vertices
adjacent in G2 receive colours which differ by at least
2. Typically the maximum degree of G1 is much larger
than the maximum degree of G2. In the case of L(2, 1)-
labelling, G1 is the square of G2. We impose the
condition that for some integer ∆, G1 has maximum
degree at most ∆2 and G2 has maximum degree ∆. We
show that under these conditions there exists a colouring
for k = ∆2 +1 provided that ∆ is large enough. This is
best possible since G1 may be a clique of size ∆2 + 1.

Theorem 1.3. There is a ∆0, such that for every ∆ ≥
∆0, and G2 ⊆ G1 with ∆(G1) ≤ ∆2 and ∆(G2) ≤ ∆,
there exists a (∆2 + 1)-colouring c of V (G1) such that
no edge of G1 is monochromatic and for every edge
xy ∈ E(G2), |c(x)− c(y)| ≥ 2.

In the next section we give an outline of the proof.
We use G1-neighbour to mean a neighbour in G1 and
G2-neighbour to indicate a neighbour in G2. For every
vertex v and every subgraph H of G1, we let deg1

H(v)
be the number of G1-neighbours of v in H. We omit
the subscript if H = G1.

We do not explicit the value of ∆0, and we assume
that it is large enough so that the inequalities stated in
the sequel hold.

2 A Sketch of the Proof

We consider a counter-example to Theorem 1.3 chosen
so as to minimise V . Thus, for every proper subset
X of the vertices of G1, there is a (∆2 + 1)-colouring
c of X such that every edge of G1 within X is non-
monochromatic, and for every edge xy of G2 contained
within X, |c(x) − c(y)| ≥ 2. Such a colouring of X
is a good colouring. In particular, as G2 ⊆ G1, this
implies that every vertex v has more than ∆2 − 2∆
G1-neighbours as otherwise we could complete a good
colouring of V (G1)− v greedily. Indeed for each vertex,
a coloured G2-neighbour forbids 3 colours, which is 2
more as being only a G1-neighbour. The next lemma
follows by setting d = 1000∆ and applying to G1 a
decomposition result due to Reed [9, Lemma 15.2].

Lemma 2.1. There is a partition of V into disjoint sets
D1, . . . , D`, S such that

(a) every Di has between ∆2− 8000∆ and ∆2 +4000∆
vertices;

(b) there are at most 8000∆3 edges of G1 leaving any
Di;

(c) a vertex has at least 3
4∆2 G1-neighbours in Di if

and only if it is in Di; and

(d) for each vertex v of S, the neighbourhood of v in
G1 contains at most

(
∆2

2

)
− 1000∆3 edges.

We let Hi be the subgraph of G1 induced by Di and
Hi its complementary graph. An internal neighbour of a
vertex of Di is a neighbour in Hi. An external neighbour
of a vertex of Di is a neighbour that is not internal. The
proof of the following lemma can be found in the full-
length version of this article [10].

Lemma 2.2. For every i, Hi has no matching of size at
least 103∆.

For each i ∈ {1, 2, . . . , `}, we let Mi be a maximum
matching of Hi, and Ki be the clique Di − V (Mi). By
Lemmas 2.1(a) and 2.2, |Ki| ≥ ∆2 − 104∆. We let
Bi be the set of vertices in Ki that have more than
∆5/4 external G1-neighbours, and we set Ai := Ki \
Bi. Considering Lemma 2.1(b) we make the following
observation.

Fact 2.1. For every index i ∈ {1, 2, . . . , `}, |Bi| ≤
8000∆7/4 and so |Ai| ≥ ∆2 − 9000∆7/4.

We are going to colour the vertices in three steps.
We first colour V1 := V \ ∪`

i=1Ai except some vertices
of S. Then we colour the vertices of V2 := ∪`

i=1Ai. We
finish by colouring the uncoloured vertices of S greedily.

In order to extend the (partial) colouring of V1 to
V2 and to finish the colouring of the vertices of S, we
need some properties. We will prove the following.

Lemma 2.3. There is a good colouring c of a subset Y
of V1 such that

(i) every uncoloured vertex of V1 is in S;

(ii) for each edge xy of every Mi, c(x) = c(y);

(iii) for every uncoloured vertex v of V1 there are at least
2∆ colours that appear on two G1-neighbours of v;
and

(iv) for every colour j and clique Ai there are at most
4
5∆2 vertices of Ai that have either a G1-neighbour
outside Di coloured j or a G2-neighbour outside Di

coloured using j − 1, j or j + 1.
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We then show that a colouring that verifies the condi-
tions of Lemma 2.3 can be extended to Y ∪ V2.

Lemma 2.4. Every good colouring of a subset Y of
V1 satisfying conditions (i)–(iv) of Lemma 2.3 can be
completed to a good colouring of Y ∪ V2.

By Lemma 2.3(iii), we can then complete the
colouring by colouring the vertices of V1 − Y greed-
ily. Thus to prove our theorem, we need only prove
Lemmas 2.3 and 2.4, which we do in the next two sec-
tions. We use several probabilistic tools, namely the
Lovász Local Lemma, the Chernoff Bound, Talagrand’s
and McDiarmid’s Inequalities. Each of these tools is
presented in the book of Molloy and Reed [9], and most
are presented in many other places. Each omitted proof
can be found in the full-length version of this article [10].

3 The Proof of Lemma 2.3

In this section, we want to find a good colouring for an
appropriate subset Y of G[V1], which satisfies conditions
(i)–(iv) of Lemma 2.3. We actually construct new
graphs G∗

1 and G∗
2 and consider good colourings of these

graphs. This will help us to ensure that the conditions
of Lemma 2.3 hold.

3.1 Forming G∗
1 and G∗

2 For j ∈ {1, 2}, we obtain
G′

j from Gj by contracting each edge of each Mi into
a vertex (that is, we consider these vertex pairs one by
one, replacing the pair xy with a vertex adjacent to all of
the neighbours of both x and y in the graph). We let Ci

be the set of vertices obtained by contracting the pairs
in Mi. We set V ∗ := V1 − ∪`

i=1V (Mi) + ∪`
i=1Ci. For

each i ∈ {1, 2, . . . , `}, let Bigi be the set of vertices of V ∗

not in Bi ∪Ci that have more than ∆9/5 neighbours in
Ai. We construct G∗

1 from G′
1 by removing the vertices

of ∪`
i=1Ai and adding for each i an edge between every

pair of vertices in Bigi. And G∗
2 is obtained from G′

2 by
removing the vertices of ∪`

i=1Ai.
Note that G∗

2 ⊆ G∗
1. Our aim is to colour the ver-

tices of V ∗ except some of S such that vertices adjacent
in G∗

1 are assigned different colours, and vertices adja-
cent in G∗

2 are assigned colours at distance at least 2.
Such a colouring is said to be nice. To every partial nice
colouring of V ∗ is associated the good colouring of V1

obtained as follows: each coloured vertex of V ∩V ∗ keeps
its colour, and for each index i, every pair of matched
vertices of Mi is assigned the colour of the correspond-
ing vertex of Ci. So this partial good colouring satisfies
condition (ii) of Lemma 2.3.

Definition 3.1. For every vertex u and every subset
F of V ∗,

• the number of G∗
1-neighbours of u in F is δ1

F (u);

• the number of G∗
2-neighbours of u in F is δ2

F (u);
and

• δ∗F (u) := δ1
F (u) + 2δ2

F (u).

For all these notations, we omit the subscript if F = V ∗.

The next lemma bounds these parameters.

Lemma 3.1. Let v be a vertex of V ∗. The following
hold.

(i) δ2(v) ≤ 2∆, and if v /∈ ∪`
i=1Ci then δ2(v) ≤ ∆;

(ii) if v ∈ S ∩ Bigi for some i, then δ1(v) ≤ ∆2 − 8∆;

(iii) δ1(v) ≤ ∆2, and if v /∈ S then δ1(v) ≤ 3
4∆2.

Proof. (i) To obtain G∗
2, we only removed some ver-

tices and contracted some pairwise disjoint pairs
of non-adjacent vertices. Consequently, the degree
of each new vertex is at most twice the maximum
degree of G2, i.e. 2∆, and the degree of the other
vertices is at most their degree is G2, hence at most
∆.

(ii) By Lemma 2.1(b), we have |Bigi | ≤ 8000∆6/5 for
each index i. Moreover, a vertex v can be in Bigi for
at most ∆1/5 values of i. Recall that for each index
i such that v ∈ S ∩ Bigi, the vertex v has at least
∆9/5 G1-neighbours in Ai. So, in the process of
constructing G∗

1, it looses at least ∆9/5 edges and
gain at most 8000∆7/5 edges. Consequently, the
assertion follows because ∆9/5 ≥ 8000∆7/5 + 8∆.

(iii) By (ii), if v ∈ S then δ1(v) ≤ deg1(v) ≤ ∆2.
Assume now that v /∈ S, hence v ∈ Bi ∪ Ci for
some index i. By Lemma 2.2, each set Ci has
at most 1000∆ vertices and by Fact 2.1, each set
Bi has at most 8000∆7/4 vertices. Moreover, by
Lemma 2.1(c), each vertex of Di has at most 1

4∆2

G1-neighbours outside of Di. It follows that each
vertex of Bi ∪ Ci has at most 1

2∆2 + 1000∆ +
8000∆7/4 + 8000∆7/5 ≤ 3

4∆2 G∗
1-neighbours.

Our construction of G′
1 and G′

2 is designed to deal
with condition (ii) of Lemma 2.3. The edges we add
between vertices of Bigi are designed to help with
condition (iv). The bound of 3

4∆2 on the degree of the
vertices of V ∗ \ S in the last lemma, helps us to ensure
that condition (i) holds.

To ensure that condition (iii) holds, we would like
to use condition (i) and the fact that sparse vertices have
many non-adjacent pairs of G1-neighbours. However,
in constructing G∗

1, we contracted some pairs of non-
adjacent vertices and added edges between some other
pairs of non-adjacent vertices. As a result, possibly
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some vertices in S are no longer sparse. We have to
treat such vertices carefully.

We define Ŝ to be those vertices in S that have at
least 90∆ neighbours outside S. Then Ŝ contains all
the vertices which may no longer be sufficiently sparse,
as we note next.

Lemma 3.2. Each vertex of S \ Ŝ has at least 450∆3

pairs of G1-neighbours in S that are not adjacent in
G∗

1.

Proof. Let s ∈ S \ Ŝ. We know that s has at least
∆2−2∆ G1-neighbours. Hence it has at least

(
∆2

2

)
−4∆3

pairs of G1-neighbours. Thus, by Lemma 2.1(d), s
has at least 996∆3 pairs of G1-neighbours that are not
adjacent in G1. Since s /∈ Ŝ, all but at most 90∆3 such
pairs lie in N(s) ∩ S. Let Ω be the collection of pairs
of G1-neighbours of s in S that are not adjacent in G1.
Then |Ω| ≥ 906∆3. For convenience, we say that a pair
of Ω is suitable if its vertices are not adjacent in G∗

1.
Let s1 be a member of a pair of Ω. If s1 does not

belong to ∪`
i=1 Bigi, then every vertex of S that is not

adjacent to s1 in G1 is also not adjacent to s1 in G∗
1.

Thus every pair of Ω containing s1 is suitable.
If s1 ∈ ∪`

i=1 Bigi, then for each index i such that
s1 ∈ Bigi, the vertex s1 has at least ∆9/5 G1-neighbours
in Ai. Hence, there are at least ∆2−92∆−(∆2−∆9/5) =
∆9/5 − 92∆ pairs of Ω containing s1. Recall from the
proof of Lemma 3.1 that the number of edges added
to s1 by the construction of G∗

1 is at most 8000∆7/5 <
1
2∆9/5 − 46∆. Consequently, the number of suitable
pairs of Ω containing the vertex s1 is at least half the
number of pairs of Ω containing s1.

Therefore, we conclude that at least 1
2 |Ω| > 450∆3

pairs of Ω are suitable.

It turns out that we will colour all of Ŝ, which makes
it easier to ensure that condition (iii) holds.

3.2 High Level Overview Our first step is to colour
some of S, including all of Ŝ. We do this in two phases.
In the first one, we consider assigning each vertex of
S a colour at random. We show by analysing this
random procedure that there is a partial nice colouring
of S such that every vertex of S \ Ŝ satisfies condition
(iii) of Lemma 2.3. In the second phase, we finish
colouring the vertices of Ŝ. We use an iterative quasi-
random procedure. In each iteration but the last, each
vertex chooses a colour, from those which do not yield a
conflict with any already coloured neighbour, uniformily
at random. The last iteration has a similar flavour.

We then turn to colouring the vertices in the sets Bi

and Ci. Our degree bounds imply that we could do this
greedily. However, we will mimic the iterative approach

just discussed. We use this complicated colouring
process because it allows us to ensure that condition (iv)
of Lemma 2.3 holds for the colouring we obtain. At any
point during the colouring process, Notbigi,j is the set
of vertices v ∈ Ai such that v has either a G′

1-neighbour
u /∈ Bigi ∪ Di that has colour j or a G′

2-neighbour
u /∈ Bigi ∪Di that has colour j − 1, j or j + 1. The
challenge is to construct a colouring such that Notbigi,j

remains small for every index i and every colour j.

3.3 Colouring Sparse Vertices As mentioned ear-
lier, we colour sparse vertices in two phases. The first
one provides a partial nice colouring of S satisfying con-
dition (iii) of Lemma 2.3. The second one extends this
nice colouring to all the vertices of Ŝ, using an iterative
quasi-random procedure.

We will need a lemma to bound the size of Notbigi,j .
We consider the following setting. We have a collection
of at most ∆2 subsets of vertices. Each set contains at
most Q vertices, and no vertex lies in more than ∆9/5

sets. A random experiment is conducted, where each
vertex is marked with probability at most 1

Q·∆2/5 . We
moreover assume that, for any set of s ≥ 1 vertices, the
probability that all are marked is at most

(
1

Q·∆2/5

)s

.
Note that this is in particular the case if the vertices
are marked independently.

Lemma 3.3. Under the preceding hypothesis, the prob-
ability that at least ∆37/20 sets contain a marked vertex
is at most exp

(
−∆1/20

)
.

Proof. For every i ∈ {1, 2, . . . , 9}, let Ei be the event
that at least 1

9∆37/20 sets contain a marked member
of Ti, where Ti is the set of vertices lying in between
∆(i−1)/5 and ∆i/5 sets. Note that if at least ∆37/20 sets
contain at least one marked vertex, then at least one
the events Ei must hold.

The total number of vertices in the sets being at
most ∆2Q, we deduce that |Ti| ≤ ∆2Q

∆(i−1)/5 . Further-
more, if Ei holds then at least 1

9∆37/20−i/5 vertices of
Ti must be marked. Therefore,

Pr(Ei) ≤
(

∆2Q/∆(i−1)/5

1
9∆37/20−i/5

)
·
(

1
Q∆2/5

) 1
9∆37/20−i/5

≤
(

e∆2Q/∆(i−1)/5

1
9∆37/20−i/5 ×Q∆2/5

) 1
9∆37/20−i/5

≤
(

9e

∆1/20

) 1
9∆37/20−i/5

.

Since 1
9∆37/20−i/5 ≥ 1

9∆1/20, the probability that Ei

holds is at most 1
9 exp

(
−∆1/20

)
, and therefore the

sought result follows.
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3.3.1 First Step

Lemma 3.4. There exists a nice colouring of a subset
H of S with colours in {1, 2, . . . ,∆2 + 1} such that

(i) every uncoloured vertex v of S \ Ŝ has at least
2∆ colours appearing at least twice in NS(v) :=
NG1(v) ∩ S;

(ii) every vertex of S has at most 19
20∆2 coloured G∗

1-
neighbours;

(iii) for every index i and every colour j, the size of
Notbigi,j is at most ∆19/10.

Proof. For convenience, let us set C := ∆2 + 1. We use
the following colouring procedure.

1. Each vertex of S is activated with probability 9
10 .

2. Each activated vertex is assigned a colour of
{1, 2, . . . , C}, independently and uniformly at ran-
dom.

3. A vertex which gets a colour creating a conflict
— i.e. assigned to one of its G∗

1-neighbours, or at
distance less than 2 of a colour assigned to one of
its G∗

2-neighbours — is uncoloured.

We aim at applying the Lovász Local Lemma to
prove that, with positive probability, the resulting
colouring fulfils the three conditions of the lemma. Let
v be a vertex of G. We let E1(v) be the event that
v does not fulfil condition (i), and E2(v) be the event
that v does not fulfil condition (ii). For each i, j, let
E3(i, j) be the event that the size of Notbigi,j exceeds
∆19/10. It suffices to prove that each of those events
occurs with probability less than ∆−17. Indeed, each
event is mutually independent of all events involving
vertices or dense sets at distance more than 4 in G∗

1 or
G′

1. Moreover, each vertex of any set Ai has at most
∆5/4 external neighbours in G, and |Ai| ≤ ∆2 + 1.
Thus, each event is mutually independent of all but at
most ∆16 other events. Consequently, the Lovász Local
Lemma applies since ∆−17 × ∆16 < 1

4 , and yields the
sought result.

Hence, it only remains to prove that the probability
of each event is at most ∆−17. Let us start with E2(v).
We define W to be the number of activated neighbours
of v. Thus, Pr(E2(v)) ≤ Pr

(
W > 19

20∆2
)
. We set

m := |N(v) ∩ S|, and we may assume that m > 19
20∆2.

The random variable W is a binomial on m variables
with probability 9

10 . In particular, its expected value
E(W ) is 9m

10 . Applying the Chernoff Bound to W with
t = m

20 , we obtain that

Pr
(
W > 19

20∆2
)

≤ Pr
(
|W −E(W )| > m

20

)
≤ 2 exp

(
− m2·10

400·27m

)
≤ ∆−17,

since 19
20∆2 < m ≤ ∆2.

Let v ∈ S \ Ŝ. We now bound Pr(E1(v)). By
Lemma 3.2, let Ω be a collection of 450∆3 pairs of G1-
neighbours of v in S that are not adjacent in G∗

1. We
consider the random variable X defined as the number
of pairs of Ω whose members (i) are both assigned the
same colour j, (ii) both retain that colour, and (iii) are
the only two vertices in N(v) that are assigned j. Thus,
X is at most the number of colours appearing at least
twice in NS(v). The probability that some non-adjacent
pair of vertices u, w in N(v) satisfies (i) is 9

10 ·
9
10 ·

1
C .

In total, the number of G∗
1-neighbours of v, u, w in H

is at most 3∆2, and the number of G∗
2-neighbours of

u and w is at most 4∆. Therefore, given that they
satisfy (i), the vertices u and w also satisfy (ii) and

(iii) with probability at least
(
1− 1

C

)3∆2

·
(
1− 2

C

)4∆.
Consequently,

E(X) ≥ 450∆3· 81
100C

exp
(
−3∆2

C

)
exp

(
−8∆

C

)
> 3∆.

Hence, if E1(v) holds then X must be smaller than its
expected value by at least ∆. But we assert that

(3.1) Pr (E(X)−X > ∆) ≤ ∆−17,

which will yield the desired result.
To establish Equation (3.1), we apply Talagrand’s

Inequality. We set X1 to be the number of colours
assigned to at least two vertices in N(v), including both
members of at least one pair in Ω, and X2 is the number
of colours that (i) are assigned to both members of
at least one pair in Ω, and (ii) create a conflict with
one of their neighbours, or are also assigned to at least
one other vertex in N(v). Note that X = X1 − X2.
Therefore, by what precedes, if E1(v) holds then either
X1 or X2 must differ from its expected value by at least
1
2∆. Notice that

E(X2) ≤ E(X1) ≤ C · 450∆3 · 1
C2

≤ 450∆.

If X1 ≥ t, then there is a set of at most 4t trials
whose outcomes certify this, namely the activation and
colour assignment for t pairs of variables. Moreover,
changing the outcome of any random trial can only
affect X1 by at most 2, since it can only affect whether
the old colour and the new colour are counted or
not. Thus Talangrand’s Inequality applies and, since
E(X1) ≥ E(X) > 3∆, we obtain that

Pr
(
|X1 −E(X1)| >

1
2
∆

)
≤ 4 exp

(
− ∆2

32 · 64 · 450∆

)
≤ 1

2
∆−17.
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Similarly, if X2 ≥ t then there is a set of at most
6t trials whose outcomes certify this fact, namely the
activation and colour assignment of t pairs of vertices
and, for each of these pairs, the activation and colour
assignment of a colour creating a conflict to a neighbour
of a vertex of the pair. As previously, changing the
outcome of any random trial can only affect X2 by
at most 2. Therefore by Talagrand’s Inequality, if
E(X2) ≥ 1

2∆ then

Pr
(
|X2 −E(X2)| >

1
2
∆

)
≤ 4 exp

(
− ∆2

32 · 96 · 450∆

)
≤ 1

2
∆−17.

If E(X2) < 1
2∆, then we consider a binomial random

variable that counts each vertex of NS(v) independently
with probability 1

4|NS(v)|∆. We let X ′
2 be the sum of this

random variable and X2. Note that 1
4∆ ≤ E(X ′

2) ≤ 3
4∆

by Linearity of Expectation. Moreover, observe that
if |X2 − E(X2)| > 1

2∆ then |X ′
2 − E(X ′

2)| > 1
4∆.

Therefore, by applying Talagrand’s Inequality to X ′
2

with c = 2, r = 6 and t = 1
4∆ ∈ [60c

√
r E(X ′

2),E(X ′
2)],

we also obtain in this case that

Pr
(
|X2 −E(X2)| >

1
2
∆

)
≤Pr

(
|X ′

2 −E(X ′
2)| >

1
4
∆

)
≤ 4 exp

(
− ∆2

16 · 192 · 3 ·∆

)
≤ 1

2
∆−17.

Consequently, we infer that Pr (E(X)−X > ∆) ≤
∆−17, as desired.

It only remains now to deal with E3(i, j). We
use Lemma 3.3. For each i, every vertex of Ai has
at most ∆5/4 external neighbours. Moreover, for each
colour j, each such neighbour is activated and assigned
a colour in {j − 1, j, j + 1} with probability at most
9
10 · 3

C < 1
∆5/4·∆2/5 . As these assignments are made

independently, the conditions of Lemma 3.3 are fulfilled,
so we deduce that the probability that E3(i, j) holds is
at most exp

(
−∆1/20

)
≤ ∆−17. Thus, we obtained the

desired upper bound on Pr(E3(i, j)), which concludes
the proof.

3.3.2 Second Step In the second step, we extend
the partial colouring of S to all the vertices of Ŝ. To do
so, we need the following general lemma, that will also
be used in the next subsection to colour the vertices of
the sets Bi ∪Ci. Its proof is long and technical, and we
omit it (the reader may consult the associated research
report [10] for details).

Lemma 3.5. Let F be a subset of V ∗ with a partial
nice colouring, and H be a set of uncoloured vertices
of F . For each vertex u of H, let L(u) be the colours
available to colour u, that is that create no conflict with
the already coloured vertices of F ∪H. We assume that
for every vertex u, |L(u)| ≥ 16∆33/20 and |L(u)| ≥
δ1
H(u) + 6∆.

Then, the partial nice colouring of F can be extended
to a nice colouring of H such that for every index
i ∈ {1, 2, . . . , `} and every colour j, the size of Notbigi,j

increases by at most ∆19/10.

Consider a partial nice colouring of S obtained in
the first step. In particular, |Notbigi,j | ≤ ∆19/10. We
wish to ensure that every vertex of Ŝ is coloured. This
can be done greedily, but to be able to continue the
proof we need to have more control on the colouring.
We shall apply Lemma 3.5 to the set H of uncoloured
vertices in Ŝ. For each vertex u ∈ H, the list L(u) is
initialised as the list of colours that can be assigned
to u without creating any conflict. By Lemmas 3.1
and 3.4(ii), |L(u)| ≥ 1

20∆2 − 4∆ ≥ 16∆33/20.
Suppose that u is in no set Bigi. Then δ1

S(u) ≤
deg1

S(u) ≤ ∆2 − 90∆, and u has at most ∆ G∗
2-

neighbours. Hence, we infer that |L(u)| ≥ δ1
H(u)+88∆.

Assume now that u belongs to some set Bigi. By
Lemma 3.1(i) and (ii), we have δ1(u) ≤ ∆2 − 8∆ and
δ2(u) ≤ ∆. So, |L(u)| ≥ δ1

H(u)+8∆−2∆ = δ1
H(u)+6∆.

Therefore, by Lemma 3.5 we can extend the partial
nice colouring of S to Ŝ such that |Notbigi,j | ≤ 2∆19/10

for every index i and every colour j.

3.4 Colouring the Sets Bi and Ci Let H :=⋃`
i=1(Bi ∪ Ci). At this stage, the vertices of H are

uncoloured. We first apply Lemma 3.5 to extend the
partial nice colouring of S to the vertices of H in such
a way that Notbigi,j does not grow too much, for every
index i and colour j. Next, we will show that the good
colouring derived from this nice colouring satisfies the
conditions of Lemma 2.3.

For each vertex u of H, let L(u) be the lists
of colours that would not create any conflict with
the already coloured vertices. By Lemma 3.1(iii),
δ1(u) ≤ 3

4∆2. Hence, |L(u)| ≥ 1
4∆2 + δ1

H(u) − 4∆ ≥
max

(
16∆33/20, δ1

H(u) + 6∆
)
.

Therefore, by Lemma 3.5, we extend the partial
nice colouring of the vertices of S to the vertices of⋃`

i=1(Bi ∪ Ci). Moreover, for each index i and each
colour j, the size of each Notbigi,j is at most 3∆19/10.

Consider now the partial good colouring of V1

associated to this nice colouring. Let us show that it
satisfies the conditions of Lemma 2.3. By the definition,
it satisfies conditions (i) and (ii). Condition (iii) follows
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from Lemma 3.4. Hence, it only remains to show that
condition (iv) holds.

Fix an index i and a colour j. Recall that Bigi

is a clique, so there is at most one vertex of Bigi of
each colour. Consequently, the number of vertices of
Ai with a G1-neighbour in Bigi coloured j is at most
max

(
2 · 1

4∆2, 3
4∆2

)
= 3

4∆2, by Lemma 2.1(c). Besides,
the number of vertices of Ai with a G2-neighbour in Bigi

coloured j−1 or j+1 is at most 4∆. Finally, the number
of vertices of Ai with either a G1-neighbour not in
Bigi ∪Di coloured j, or a G2-neighbour not in Bigi ∪Di

coloured j−1, j or j+1 is at most |Notbigi,j | ≤ 3∆19/10.
Thus, all together, the number of vertices of Ai with
a G1-neighbour not in Bi ∪ Ci coloured j, or a G2-
neighbour not in Bi ∪ Ci coloured j − 1 or j + 1 is at
most

3
4
∆2 + 3∆19/10 + 4∆ ≤ 4

5
∆2.

This concludes the proof of Lemma 2.3.

4 The Proof of Lemma 2.4

We consider a good colouring of V satisfying the con-
ditions of Lemma 2.3. The procedure we apply is com-
prised of two phases. In the first phase, a random per-
mutation of colours is assigned to the vertices of Ai. In
doing so, we might create two kinds of conflicts: a vertex
of Ai coloured j might have an external G1-neighbour
coloured j, or a G2-neighbour coloured j − 1 or j + 1.
We shall deal with these conflicts in a second phase.
To be able to do so, we first ensure that the colouring
obtained in the first phase fulfils some properties.

Proposition 4.1.

|Ai|+ |Bi|+
1
2
|V (Mi)| ≤ ∆2 + 1.

Proof. By the maximality of Mi, for every edge e = xy
of Mi there is at most one vertex ve of Ki that is
adjacent to both x and y in Hi. Hence, every edge e
of Mi has an endvertex n(e) that is adjacent in Hi to
every vertex of Ki except possibly one, called x(e). By
Lemmas 2.1 and 2.2,

|Ai|+ |Bi| ≥ ∆2 − 8000∆− 2.103∆ ≥ 103∆ > |Mi|.

So there exists a vertex v ∈ Ai ∪ Bi \ ∪e∈Mix(e). The
vertex v is adjacent in G1 to all the vertices of Ki (except
itself) and all the vertices n(e) for e ∈ Mi. So

|Ai|+ |Bi| − 1 +
1
2
|V (Mi)| ≤ deg1(v) ≤ ∆2.

4.1 Phase 1 For each set Ai, we choose a subset of
ai := |Ai| colours as follows. First, we exclude all the
colours that appear on the vertices of Bi∪Ci. Moreover,
if a colour j is assigned to at least three pairs of vertices
matched by Mi, not only do we exclude the colour j
but also the colours j− 1 and j +1. By Proposition 4.1
and because every edge of Mi is monochromatic by
Lemma 2.3(ii), we infer that at least ai colours have not
been excluded. Then we assign a random permutation
of those colours to the vertices of Ai. We let Tempi

be the subset of vertices of Ai with an external G1-
neighbour of the same colour, or a G2-neighbour with a
colour at distance less than 2.

Lemma 4.1. With positive probability, the following
hold.

(i) For each i, |Tempi | ≤ 3∆5/4;

(ii) for each index i and each colour j, at most ∆19/10

vertices of Ai have a G1-neighbour in ∪k 6=iAk

coloured j or a G2-neighbour in ∪kAk coloured j−1
or j + 1.

Proof. We use the Lovász Local Lemma. For every
index i, we let E1(i) be the event that |Tempi | is greater
than 3∆5/4. For each index i and each colour j, we
define E2(i, j) to be the event that condition (ii) is
not fulfilled. Each event is mutually independent of all
events involving dense sets at distance greater than 2,
so each event is mutually independent of all but at most
∆9 other events. According to the Lovász Local Lemma,
it is enough to show that each event has probability at
most ∆−10, since ∆9 ×∆−10 < 1

4 .
Our first goal is to upper bound Pr(E1(i)). We may

assume that both the colour assigments for all cliques
other than Ai, and the choice of the ai colours to be used
on Ai have already been made. Thus it only remains to
choose a random permutation of those ai colours onto
the vertices of Ai. Since every vertex v ∈ Ai has at most
∆5/4 external neighbours and ∆ G2-neighbours, the
probability that v ∈ Tempi is at most (∆5/4 + 4∆)/ai.
So we deduce that E(|Tempi |) ≤ ∆5/4 +4∆. We define
a binomial random variable B that counts each vertex
of Ai independently with probability ∆5/4/(2ai). We
set X := |Tempi |+ B. By Linearity of Expectation,

1
2
∆5/4 ≤ E(X) = E(|Tempi |) +

1
2
∆5/4 ≤ 2∆5/4.

Moreover, if |Tempi | > 3∆5/4 then |Tempi | −
E(|Tempi |) > ∆5/4, and hence X − E(X) > 1

2∆5/4.
We now apply McDiarmid’s Inequality to show that X
is concentrated. Note that if |Tempi | ≥ s, then the
colours to 2s vertices (that is, s members of Tempi
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and one neighbour for each) certify that fact. More-
over, switching the colours of two vertices in Ai may
only affect whether those two vertices are in Tempi,
and whether at most four vertices with a colour at
distance less than 2 are in Tempi. So we may apply
McDiarmid’s Inequality to X with c = 6, r = 2 and
t = 1

2∆5/4 ∈
[
60c

√
r E(X),E(X)

]
. We deduce that

the probability that the event E1(i) holds is at most

Pr
(
|X −E(X)| > 1

2
∆5/4

)
<4 exp

(
− ∆5/2

4× 32× 36× 2∆5/4

)
<∆−10.

We now upper bound Pr(E2(i, j)). To this end,
we use Lemma 3.3. Recall that the vertices of Ai get
different colours. Every vertex v ∈ Ai has at most
∆5/4 external neighbours, and ∆ G2-neighbours. We set
Q := ∆5/4+∆. We let S(v) be the set of all vertices that
are either external G1-neighbours of v, or G2-neighbours
of v. Hence, |S(v)| ≤ Q. Note that each vertex is in at
most ∆5/4 sets S(v) for v ∈ Ai. Each vertex of a set S(v)
is assigned a colour in {j − 1, j, j + 1} with probability
at most

max
k

3
ak

<
1

3Q×∆2/5
,

because min ak ≥ ∆2−9000∆7/4 by Fact 2.1. Moreover,
at most three vertices in each set Ak are assigned a
colour in {j − 1, j, j + 1}. As the random permutations
for different cliques are independent, Lemma 3.3 implies
that the probability that more than ∆37/20 vertices of
Ai have an external G1-neighbour in some Ak coloured
j, or a G2-neighbour in some Ak coloured j − 1, j or
j + 1 is at most exp

(
−∆1/20

)
< ∆−10. This concludes

the proof.

4.2 Phase 2 We consider a colouring γ satisfying the
conditions of Lemma 4.1. For each set Ai and each
vertex v ∈ Tempi we let Swappablev be the set of
vertices u such that

(a) u ∈ Ai \ Tempi;

(b) γ(u) does not appear on an external G1-neighbour
of v;

(c) γ(v) does not appear on an external G1-neighbour
of u;

(d) γ(u) − 1 and γ(u) + 1 do not appear on a G2-
neighbour of v;

(e) γ(v) − 1 and γ(v) + 1 do not appear on a G2-
neighbour of u.

Lemma 4.2. For every v ∈ Tempi, the set Swappablev

contains at least 1
10∆2 vertices.

Proof. Let us upper bound the number of vertices that
are not in Swappablev. By Lemma 4.1(i), at most 3∆5/4

vertices of Ai violate condition (a) and at most ∆5/4

vertices violate condition (b) by the definition of Ai. As
v has at most ∆ G2-neighbours, the number of vertices
violating condition (d) is at most 2∆. According to
Lemma 2.3(iv), the number of vertices of Ai violating
conditions (c) or (e) because of a neighbour not in(
∪`

k=1Ak

)
∪ (Bi ∪ Ci) is at most 4

5∆2. Moreover, by
the way we chose the ai colours for Ai, the number of
vertices violating condition (e) because of a neighbour
in Bi ∪ Ci is at most 10∆. Finally, the number of
vertices violating conditions (c) or (e) because of a
colour assigned during Phase 1 is at most ∆19/10 thanks
to Lemma 4.1(ii). Therefore, we deduce that the size of
Swappablev is at least

|Ai| −
4
5
∆2 −∆19/10 − 4∆5/4 − 12∆− 1 ≥ 1

10
∆2,

as |Ai| ≥ ∆2 − 9000∆
7
4 by Fact 2.1.

For each index i and each vertex v ∈ Tempi, we
choose 100 uniformly random members of Swappablev.
These vertices are called candidates of v.

Definition 4.1. A candidate u of v is unkind if either

(a) u is a candidate for some other vertex;

(b) v has an external neighbour w that has a candidate
w′ with the same colour as u;

(c) v has a G2-neighbour w that has a candidate w′

coloured γ(u)− 1, γ(u) or γ(u) + 1;

(d) v has an external neighbour w that is a candidate
for exactly one vertex w′, with γ(w′) = γ(u);

(e) v has a G2-neighbour w that is a candidate for
exactly one vertex w′, that is coloured γ(u)−1, γ(u)
or γ(u) + 1;

(f) u has an external neighbour w that has a candidate
w′ with the same colour as v;

(g) u has a G2-neighbour w that has a candidate w′

coloured γ(v)− 1, γ(v) or γ(v) + 1;

(h) u has an external neighbour w that is a candidate
for a vertex w′ with the same colour as v; or

(i) u has a G2-neighbour w that is a candidate for a
vertex w′ coloured γ(v)− 1, γ(v) or γ(v) + 1.
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A candidate of v is kind if it is not unkind.

Lemma 4.3. With positive probability, for each index i,
every vertex of Tempi has a kind candidate.

We choose candidates satisfying the preceding
lemma. For each vertex v ∈ Tempi we swap the colour
of v and one of its kind candidates. The obtained colour-
ing is the desired one. So to conclude the proof of
Lemma 2.4, it only remains to prove Lemma 4.3.

Proof of Lemma 4.3. For every vertex v in some Tempi,
let E1(v) be the event that v does not have a kind
candidate. Each event is mutually independent of all
events involving dense sets at distance greater than 2.
So each event is mutually independent of all but at
most ∆9 other events. Hence, we shall prove that the
probability of each event is at most ∆−10, and so the
conclusion will follow from the Lovász Local Lemma
since ∆−10 ·∆9 < 1

4 .
Observe that the probability that a particular ver-

tex of Swappablev is chosen is 100/|Swappablev |, which
is at most 1000∆−2.

We wish to upper bound Pr(E1(v)) for an arbitrary
vertex v ∈ Tempi, so we can assume that all vertices but
v have already chosen candidates. By Lemma 4.1(i),
the number of vertices that satisfy condition (a) of
Definition 4.1 is at most 300∆5/4. Note that the vertex
v has at most ∆5/4 external neighbours, each having at
most 100 candidates. Since each colour appears on at
most one member of Swappablev, we deduce that the
number of vertices satisfying one of the conditions (b)
and (d) is at most 101∆5/4. Similarly, the number of
vertices satisfying one of the conditions (c) and (e) is at
most 303∆.

We deal now with the remaining four conditions,
starting with condition (f). The number of vertices of
Ai that satisfy condition (f) is at most the number of
edges with an endvertex in Ai and an endvertex in Ak

with k 6= i, and such that the external endvertex has
chosen a candidate with the colour of v. For each vertex
w ∈ ∪k 6=iAk, we let Nw be the number of G1-neighbours
of w in Ai. So, Nw ≤ ∆5/4. Note that

∑
Nw ≤ 8000∆3

by Lemma 2.1(b). We define the random variable Fw

to be Nw if w has a candidate with the colour of v,
and 0 otherwise. Thus, the number of vertices of Ai

that satisfy condition (f) is at most the sum σ of the
variables Fw for w ∈ ∪k 6=iAk. We aim at showing that

(4.2) Pr
(
σ > 2∆3/2

)
<

1
8
∆−10.

Since each vertex in some set Tempk chooses its candi-
dates independently, the variables Fw are independent.

For each r ∈ {0, 1, . . . , dlog2

(
∆5/4

)
e}, let Sr be the set

of vertices w of ∪k 6=iAk such that 2r−1 < Nw ≤ 2r. So,

σ ≤
dlog2(∆5/4)e∑

r=0

∑
w∈Sr

Fw ≤
dlog2(∆5/4)e∑

r=0

2rσr

where σr := |{w ∈ Sr : Fw 6= 0}|. Consequently, to
prove (4.2) it suffices to show that for every index r,

Pr (σr > t) <
∆−10

8
(
dlog2(∆5/4)e+ 1

)
where t := 2∆3/2

2r(dlog2(∆5/4)e+1) .

Fix an index r. As the variables Fw are indepen-
dent, the probability that σr is more than t is no more
than the probability that the binomial random variable
BIN(n, p) with n := 8000

2r−1 ∆3 and p := 1000∆−2 is more
than t. Therefore, we deduce from Chernoff’s Bound
that

Pr (σr > t) ≤ Pr
(

BIN(n, p)− np >
t

2

)
< 2 exp

(
t

2
−

(
np +

t

2

)
ln

(
1 +

t

2np

))
<

∆−10

8
(
dlog2(∆5/4)e+ 1

) ,

as wanted.
A similar argument shows that, with probability at

least 1 − 1
8∆−10, at most 2∆3/2 vertices of Ai satisfy

condition (g).
We consider now condition (h). A vertex u of Ai

satisfies condition (h) if it has an external G1-neighbour
that was chosen as a canditate for a vertex with the
same colour as v. We actually consider the number of
edges with an endvertex in Ai and the other in some Ak

with k 6= i, and such that the endvertex not in Ai is a
candidate for a vertex with the same colour as v. We
express this as the sum of several random variables.

Recall that Nw is the number of G1-neighbours of w
in Ai, for every w ∈ ∪k 6=iAk. So, Nw ≤ ∆5/4. We define
Xw to be Nw if w is a candidate for a vertex with the
colour of v, and 0 otherwise. Thus, the probability that
Xw = Nw is at most 1000∆−2. The number of vertices
of Ai satisfying condition (h) is at most the sum τ of
the variables Xw for w ∈ ∪k 6=iAk. Our aim is to show
that

(4.3) Pr
(
τ > 2∆3/2

)
<

1
8
∆−10.

Recall that

Sr = {w ∈ ∪k 6=iAk : 2r−1 < Nw ≤ 2r}
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for every r ∈ {0, 1, . . . , dlog2

(
∆5/4

)
e}. Hence,

τ ≤
dlog2(∆5/4)e∑

r=0

∑
w∈Sr

Xw ≤
dlog2(∆5/4)e∑

r=0

2rτr

where τr := |{w ∈ Sr : Xw 6= 0}|. Consequently, to
prove (4.3) it suffices to show that for every index r,

(4.4) Pr (τr > t) <
∆−10

8
(
dlog2

(
∆5/4

)
e+ 1

)
where t := 2∆3/2

2r(dlog2(∆5/4)e+1) .

Let us fix an index r. Observe that τr is at
most 100

∑
k 6=i Zk

r where each Zk
r is a zero-one random

variable, which is 1 if there is a vertex of Sr ∩ Ak

that is a candidate for a vertex with the same colour
as v, and 0 otherwise. In particular, Zk

r = 1 with
probability at most 1000|Sr ∩ Ak|∆−2. Moreover, if
τr > t then

∑
k 6=i Zk

r > t
100 . Let Rr := 21−r · 8000∆3.

By Lemma 2.1(b), for every k 6= i the size of Sr ∩Ak is
at most Mr := min

(
∆2, Rr

)
. We set

Tm := {k 6= i : 2m−1 ≤ |Sr ∩Ak| ≤ 2m}

for every integer m ∈ {0, 1, . . . , dlog2(Mr)e}. Hence,
|Tm| ≤ 22−m−r · 8000∆3, and

τr ≤ 100
dlog2(Mr)e∑

m=0

∑
k∈Tm

Zk
r .

Let us fix an index m. The variables Zk
r for k ∈ Tm

are independent zero-one random variables, each being
1 with probability at most 2m · 1000∆−2. Observe that
if 2m ≥ ∆2/1000, then |Tm| ≤ 32 · 106 · 2−r∆ and hence
τr ≤ t so that (4.4) holds. Thus we assume in the
sequel that 2m ≤ ∆2/1000. We define Ym to be the
sum of 22−m−r · 8000∆3 independent zero-one random
variables, each being 1 with probability 2m · 1000∆−2.
Thus,

∑
k∈Tm

Zk
r ≤ Ym. The expected value of Ym is

E(Ym) = 32 · 106 · 2−r∆ < ∆3/2.

Setting t′ := t
100·(dlog2(Mr)e+1) , we deduce from Cher-

noff’s Bound that

Pr
(

Ym −E(Ym) >
t′

2

)
<2 exp

(
t′

2
− ln

(
1 +

t′

2E(Ym)

)
(E(Ym) +

t′

2
)
)

<
∆−10

8
(
dlog2

(
∆5/4

)
e+ 1

)
(dlog2 (Mr)e+ 1)

.

This implies (4.4), which in turn implies (4.3), as
desired.

A similar argument shows that the probability
that more than ∆3/2 − 200∆ vertices of Ai satisfy
condition (i) because of an external G2-neighbour is at
most 1

8∆−10. Moreover, at most 200∆ vertices satisfy
condition (i) because of an internal G2-neighbour.

Therefore, with probability at least 1 − 1
2∆−10 the

number of unkind members of Swappablev is at most

8∆3/2 + 300∆5/4 + 101∆5/4 + 303∆ < ∆7/4.

In this case, the probability that no candidate is kind is
at most (

∆7/4

∆2/10

)100

<
1
2
∆−10.

Consequently, the probability that E1(v) holds is at
most 1

2∆−10 + 1
2∆−10 = ∆−10, as desired. This

concludes the proof.
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