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Abstract

We develop an idea of a local 3-edge-coloring of a cubic graph, a generalization of
the usual 3-edge-coloring. We allow for an unlimited number of colors but require that
the colors of two edges meeting at a vertex always determine the same third color.
Local 3-edge-colorings are described in terms of colorings by points of a partial Steiner
triple system such that the colors meeting at each vertex form a triple of the system.
An important place in our investigation is held by the two smallest non-trivial Steiner
triple systems, the Fano plane PG(2, 2) and the affine plane AG(2, 3). For i = 4, 5,
and 6 we identify certain configurations Fi and Ai of i lines of the Fano plane and the
affine plane, respectively, and prove a theorem saying that a cubic graph admits an
Fi-coloring if and only if it admits an Ai-coloring.
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4LaBRI, Université Bordeaux I, 33405 Talence Cedex, France. E-mail: raspaud@labri.fr.
5Institute for Theoretical Computer Science (iti) and Department of Applied Mathematics (kam), Faculty
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Among consequences of this is the result of Holroyd and Škoviera (2004) that the
edges of every bridgeless cubic graph can be colored by using points and blocks of any
non-trivial Steiner triple system S. Another consequence is that every bridgeless cubic
graph has a proper edge-coloring by elements of any abelian group of order at least 12
such that around each vertex the group elements sum to 0.

We also propose several conjectures concerning edge-coloring of cubic graphs and
relate them to several well-known conjectures. In particular, we show that both the
Cycle Double Cover Conjecture and the Fulkerson Conjecture can be formulated as a
coloring problem in terms of known geometric configurations—the Desargues configu-
ration and the Cremona-Richmond configuration, respectively.

1 Introduction

Edge colorings of cubic graphs have been extensively studied for more than a century. The
original incentive came in 1880 from Tait’s attempt to solve the Four Color Problem [33],
and during the subsequent decades this concept has established close connections to other
areas of graph theory, including nowhere-zero flows and embeddings of graphs on surfaces.

Edge-colorings divide cubic graphs into two uneven parts. The class of 3-edge-colorable
graphs comprises almost all cubic graphs (Robinson and Wormald [31]) and seems to be
easier to understand. Its complement is an extremely sparse class of graphs consisting of
graphs with chromatic index four and reputed for being closely related to several difficult
problems in graph theory. “Non-trivial” members of this family are known as snarks and may
include counterexamples to the Cycle Double Cover Conjecture, the Five Flow Conjecture,
and Fulkerson’s Conjecture.

The classification problem, i.e., the problem of determining whether a cubic graph has
chromatic index three or four, is very interesting but, as Holyer [19] showed, is exceedingly
difficult. It is therefore surprising that very little attention has so far been given to gen-
eralizations of classical 3-edge-colorings. Such generalizations might shed new light on the
classification problem and on several other problems related to edge-colorings of graphs.

A natural way to generalize the concept of a 3-edge-coloring is to replace the global
condition on the number of colors by a local one. This can be done, for instance, by allowing
the number of colors to be arbitrary, but requiring that any two colors meeting at a vertex
always determine the same third color. This condition is automatically fulfilled whenever
only three colors are used. Therefore, such colorings include 3-edge-colorings as a special
case.

Our local condition allows us to regard the colors as points of a Steiner triple system
S, with triples of colors occurring at vertices being blocks of the system. This is because
in a Steiner triple system any two points belong to exactly one block. Of course, such a
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coloring (called a Steiner coloring, or more specifically, an S-coloring) need not use up all
the points or all the blocks of the system. Thus, in general, it is more appropriate to speak of
edge-colorings by partial Steiner triple systems, or equivalently, by configurations of points
and blocks contained in Steiner triple systems.

Steiner colorings have been previously considered by several authors. In 1986, Archdeacon
[1, 2] proposed the study of general Steiner colorings and conjectured that every bridgeless
cubic graph admits an S-coloring for each Steiner triple system S of order greater than three.
He also observed that every bridgeless cubic graph has a coloring by the smallest non-trivial
Steiner triple system, the projective plane PG(2, 2) with 7 points known as the Fano plane
F7 (see the left part of Figure 1). In 2004, Holroyd and Škoviera [18] confirmed Archdeacon’s
conjecture. Their proof identified an “unavoidable set” U of three configurations (shown in
Figure 1) such that

(i) every non-trivial Steiner triple system contains at least one member of U; and

(ii) each configuration in U colors every bridgeless cubic graph.

The geometric structure of Fano colorings was subsequently investigated by Máčajová and
Škoviera [26]. They showed that six (and conjectured that four) lines of the Fano plane
covering all seven points are enough to color every bridgeless cubic graph. They also proved
that their Four-Line Conjecture is equivalent to an older conjecture of Fan and Raspaud [12]:
every bridgeless cubic graph has three perfect matchings with empty intersection. The equiv-
alence of these two conjectures establishes a connection between Steiner colorings and other
areas of graph theory such as cycle coverings of graphs or Fulkerson’s conjecture.
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Figure 1: Unavoidable set of configurations for non-trivial Steiner triple systems

Archdeacon [1] also proposed another generalization of 3-edge-colorings of cubic graphs.
Given a finite abelian group A, an A-coloring of a cubic graph G is an assignment of non-zero
elements of A to the edges of G subject to the condition that for each vertex v the values
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on the edges incident with v sum to 0 in A. Note that the elements assigned to incident
edges do not need to be distinct. This concept is an undirected analogue of nowhere-zero
A-flows and, at the same time, a generalization of 3-edge-colorings since a Z2 × Z2-coloring
is nothing but the usual 3-edge-coloring.

To emphasize the exceptional role of the group Z2 ×Z2, Archdeacon [1] conjectured that
an A-coloring exists for each bridgeless cubic graph and each abelian group A of order at
least five. This conjecture was settled by Máčajová et al. [27] by exploiting the fact that,
in contrast to Z2 × Z2-colorings, general abelian colorings need not be proper, i.e., incident
edges can be assigned the same color.

Proper abelian colorings generalize 3-edge-colorings. It transpires that abelian colorings
can be conveniently studied within the context of partial Steiner colorings. For every abelian
group A, one can define a partial Steiner triple system C(A) whose points are all non-zero
elements of A and blocks are all 3-element subsets of A − {0} with zero sum. Thus, C(A)-
colorings coincide with proper A-colorings.

By employing this interpretation, Máčajová et al. [27] noticed that there are groups that
do not color all bridgeless cubic graphs (e.g., cyclic groups of order smaller than 10) and
they sketched a proof of the fact that all abelian groups of order at least 12 do. As for the
four groups Z4 × Z2, Z3 × Z3, Z10 and Z11, the existence of proper colorings remains open.
Each of these groups contains a configuration of four lines of the Fano plane covering all
seven points, so the existence of such colorings would follow from the Four-Line Conjecture.

In the present paper we continue the study of abelian colorings but with different empha-
sis. Instead of treating abelian colorings directly, we focus on relationships between Steiner
colorings hidden below the surface of abelian colorings. Two particular Steiner triple systems
play a prominent role in our analysis, the projective plane PG(2, 2) with 7 points (the Fano
plane), and the affine plane A(2, 3) with 9 points. Our main result, Theorem 3.2, shows
that for i ∈ {4, 5, 6} each of these systems contains a configuration of i lines, denoted by Fi

and Ai, respectively (see Figure 4), such that a cubic graph is Fi-colorable if and only if it is
Ai-colorable. This equivalence is rather surprising as these colorings are based on projective
and affine geometries over fields of coprime characteristic.

Theorem 3.2 has several important consequences. First of all, the fact mentioned above
that every bridgeless cubic graph has an F6-coloring [26] now implies that it also has an
A6-coloring. Since there is a copy of F6 or a copy of A6 in C(A) for every abelian group A
of order at least 12, it follows that every bridgeless cubic graph has a proper A-coloring for
each such group.

As regards the four exceptional groups Z4 × Z2, Z3 × Z3, Z10, and Z11, we note that
C(Z4 ×Z2) coincides with F5 (see Figure 6). Although this configuration is not contained in
other exceptional groups, the “equivalent” configuration A5 is. It follows that the existence of
a proper Z4 ×Z2-coloring implies the existence of a proper coloring by each of the remaining
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exceptional groups.
In addition, we can easily deduce the main result of Holroyd and Škoviera [18], asserting

that every bridgeless cubic graph has an S-coloring for every non-trivial Steiner triple system
S. Indeed, it directly follows from Theorem 3.2 that every bridgeless cubic graph admits a
coloring by each member of the unavoidable set U depicted in Figure 1.

The paper is organized as follows. In the next section we deal with several topics related
to edge-colorings and partial Steiner triple systems that we need throughout the paper. In
particular, we show that F4, which is also called the sail configuration, is the smallest con-
figuration that could color every bridgeless cubic graph and state three related conjectures.
Section 3 is devoted to the main result of this paper, Theorem 3.2, and its proof. The next
three sections deal with applications of Theorem 3.2 to general Steiner colorings, to abelian
colorings and to various modifications. In the final section we return to colorings by con-
figurations in the general sense and concentrate on so-called symmetric configurations. We
show that three well-known conjectures, the Cycle Double Cover Conjecture, the Fulkerson
Conjecture and the Petersen Coloring Conjecture can all be formulated as coloring problems
in terms of symmetric point-line configurations such as the Desargues configuration and the
Cremona-Richmond configuration known from geometry.

2 Colorings and configurations

Graphs considered in this paper are finite, with parallel edges and loops permitted. For the
most part, however, they are cubic and loopless, as edge-colorings exclude loops. From now
on, an edge-coloring of a graph is an assignment of colors to the edges of a graph in such a
way that adjacent edges receive distinct colors. Our aim is to study edge-colorings of cubic
graphs where the set of colors is endowed with the structure of a partial Steiner triple system
subject to the condition that the colors meeting at a vertex form a triple of the system.

A Steiner triple system S = (P,B) of order n is a collection B of three-element subsets
(called triples or blocks) of a set P of n points such that each pair of points is together
present in exactly one triple. The smallest Steiner triple system is the trivial system I which
has three points and a single block. In general, a Steiner triple system of order n exists if
and only if n ≡ 1 or 3 (mod 6) (see, e.g., the monograph by Colbourn and Rosa [6]).

If each pair of points is contained in at most one triple, and if there are no isolated points,
we say that S is a partial Steiner triple system. Note that there is a partial Steiner triple
system of order n for each n ≥ 5.

As shown by Treash [34] in 1971, every partial Steiner triple system can be embedded
into a full Steiner triple system (see also [6]). A partial Steiner triple system can thus be
thought of as a configuration of points and blocks of a Steiner triple system. This justifies
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the term configuration which we use as a short synonym for partial Steiner triple system.
(Our usage follows the one of Grannell et al. [14, 15] and differs from the one of Gropp
[16, 17].)

It is sometimes helpful to transform a partial Steiner triple system into another one. This
can be done by mapping the points of S to points of T in such a way that each block of
S becomes a block of T . Such a mapping is called a homomorphism from S to T and is
denoted by S → T . Note that a homomorphism is not necessarily injective, but it must be
injective on each block. If S → T , we usually say that S maps to T .

Figure 2: The smallest class 2 configuration C15
∼= F4

Many interesting partial Steiner triple systems come from geometrical configurations.
Two important examples are the projective and the affine Steiner triple systems. For n ≥ 2,
the projective Steiner triple system PG(n, 2) has Z

n+1

2 − {0} as its point set, the blocks of
the system being the triples {x, y, z} of points such that x + y + z = 0. For n ≥ 2, the
affine Steiner triple system AG(n, 3) has point set Z

n
3 , the triples of the system being again

the triples of distinct points with zero sum. The first of these classes includes the smallest
non-trivial Steiner triple system PG(2, 2), the Fano plane, which has 7 points. The second
smallest non-trivial Steiner triple system is the unique system with 9 points, the affine plane

AG(2, 3).
Certain projective and affine configurations will play an important role in our further

study. For example, it is well known that the Fano plane has two non-isomorphic configu-
rations of four lines: C15 on seven points (see Figure 2), and the Pasch configuration C16

isomorphic to the Fano plane minus a point (we follow the notation used by Grannell et al.
[14, 15]). The Pasch configuration is the only partial Steiner triple system with six points
and four blocks. In case of seven point configurations contained in the Fano plane, we define
Fm to be the unique configuration isomorphic to m lines of the Fano plane covering all seven
points, for each m ∈ {4, . . . , 7}. (See Figure 4.)

The affine plane AG(2, 3) contains two non-isomorphic configurations of four lines and
seven points: C14 shown in Figure 5 and C15

∼= F4. In the context of the affine plane, the
latter configuration will be denoted by A4. The configuration A4 can be extended into a
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(0,1)

(1,1)

(2,2) (2,0)(2,1)

(1,2)(1,0)

Figure 3: The mitre configuration along with affine coordinates of its points

five-line configuration of AG(2, 3) in two different ways. If the new line entirely consists
of points of A4, the resulting configuration is called the mitre (it is shown in Figure 3).
Otherwise, the configuration has eight points and is denoted by A5 (see Figure 4). Among
the seven non-isomorphic configurations of six lines covering all nine points of AG(2, 3) we
deal only with the configuration A6

∼= D9 displayed in Figures 1 and 4. For more information
about Steiner triple systems and configurations the reader may consult the monograph by
Colbourn and Rosa [6].

Let us now return to colorings. Given a partial Steiner triple system S, an S-coloring of
a cubic graph G is a coloring of the edges of G by points of S such that the colors of any
three pairwise incident edges form a block of S. A graph which admits such a coloring is said
to be S-colorable. If a cubic graph G is S-colorable and S maps to a configuration T , then
G is also T -colorable. In particular, if S maps to the trivial system I, then a cubic graph
is S-colorable if and only if it is 3-edge-colorable. Borrowing our terminology from Vizing’s
edge-coloring theorem, we call a non-empty configuration class 1 if it maps to I, and class 2

otherwise. For example, C14 and the Pasch configuration C16 are easily checked to be class
1 whereas C15

∼= F4 is class 2. The latter can either be verified directly or can be derived
from the fact that the Petersen graph is F4-colorable [26, Figure 1] but not 3-edge-colorable.

In fact, F4 is the smallest class 2 configuration. We leave the straightforward proof of
the following proposition to the reader.

Proposition 2.1. Let C be a configuration of class 2 with the least number of points and

blocks. Then C is isomorphic to F4.

Somewhat surprisingly, the smallest class 2 configuration F4 seems to be sufficient to color
every bridgeless cubic graph. Indeed, no bridgeless cubic graph that lacks an F4-coloring has
been found so far. This led Máčajová and Škoviera [26] to propose the following conjecture.

Conjecture 2.2. (Four-Line Conjecture) Every bridgeless cubic graph admits an F4-colo-

ring.
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Danziger et al. [10] showed that the F5-configuration of the Fano plane (known as mia)
and the mitre are the only two five-line configurations on seven points. Both of them contain
the four-line configuration of the Fano plane F4, and so these three configurations are the
smallest three configurations of class 2. Therefore the following two conjectures [26] are
natural relaxations of the Four-Line Conjecture.

Conjecture 2.3. (Five-Line Conjecture) Every bridgeless cubic graph admits an F5-coloring.

Conjecture 2.4. (Mitre Conjecture) Every bridgeless cubic graph admits a mitre-coloring.

We point out that Kaiser and Raspaud [25] have recently verified the 5-Line Conjecture
for bridgeless cubic graphs of oddness 2 (the oddness of a cubic graph G being the minimum
number of odd circuits in a 2-factor of G).

Colorings by projective configurations can conveniently be seen as nowhere-zero flows.
An A-flow on a graph G is an orientation of the edges of G and a function ξ : E(G) → A
from the edge-set of G to an abelian group A (written additively) such that for each vertex
the sum of incoming values equals the sum of outgoing values. A flow is nowhere-zero if it
is non-zero on every edge of G.

If each element of A is self-opposite, then the orientation of G becomes irrelevant and we
may view ξ as a function on an undirected rather than a directed graph. In this case, the
group A is isomorphic to a direct product of copies of Z2.

Since the lines of any projective Steiner triple system correspond to triples of points from
Z

n+1

2 −{0} whose sum is 0, it follows immediately from the definition that a coloring by any
configuration contained in a projective Steiner triple system PG(n, 2) is just a nowhere-zero
Z

n+1

2 -flow on G. An important consequence of this fact is that a cubic graph which has
a bridge cannot be colored by any projective configuration because an arbitrary flow must
take the value zero on any bridge. Conversely, every bridgeless cubic graph G admits a
nowhere-zero Z2×Z2×Z2-flow (see [11, Chapter 6], or [23]), and hence G can be F7-colored.
Thus a cubic graph is F7-colorable if and only if it is bridgeless.

3 Projective and affine colorings

The purpose of this section is to establish a fundamental relationship between the projective
and the affine colorings of a cubic graph, more precisely between the colorings by configura-
tions in the Fano plane and the colorings by configurations in the affine plane.

Let us start with the observation that for i = 4, 5 and 6 the projective configuration Fi

is a homomorphic image of the affine configuration Ai. This is trivial for i = 4 because
F4

∼= A4. Furthermore, F5 arises from A5 by identifying the points labeled (0, 1) and (0, 2)
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into one point (see the middle part of Figure 4), and F6 results from A6
∼= D9 by identifying

the points labeled (0, 1) and (0, 2) into one point and the points labeled (1, 0) and (2, 0) into
another point (see Figure 4). In all the three cases the identified pairs of points come from
disjoint blocks, implying that the resulting mapping is a homomorphism. Thus Ai maps
onto Fi and, consequently, every Ai-coloring yields an Fi-coloring.

Surprisingly, there is a relationship between the colorings in the opposite direction, too.
This relationship is far less obvious because it cannot be supported by a homomorphism
argument. Nevertheless, we show that each Fi-coloring of a cubic graph G gives rise to an
Ai-coloring of G, although the resulting coloring need not be uniquely determined by an
Fi-coloring anymore.

The tool that transfers the colorings from the Fano plane to the affine plane involves the
structural concept of a “triad” of parity subgraphs. Following Zhang [35], we define a parity

subgraph of a graph G to be a subgraph P with the property that for each vertex v of G the
degree of v in P has the same parity as its degree in G.

In a cubic graph every parity subgraph is a spanning subgraph with all vertices having
degree one or three. We may unambiguously identify such a parity subgraph with its edge-
set. A triad of a cubic graph G is a set {P1, P2, P3} of three parity subgraphs of G such that
P1 ∩ P2 ∩ P3 = ∅. Note that a cubic graph containing a triad must be bridgeless because a
bridge belongs to every parity subgraph.

In a cubic graph, each 1-factor is a parity subgraph. Let us call the number of 1-factors
in a triad its weight. The weight then measures the “quality” of a triad—the heavier a triad
is, the more difficult it is to find.

It may be useful to note that the concept of a parity subgraph is in some sense comple-
mentary to the concept of a Z2-flow on a graph. Indeed, the complement G − E(P ) of a
parity subgraph P is an even subgraph of G, i.e., a spanning subgraph with all vertices of
even degree. In turn, every even subgraph H corresponds to a unique Z2-flow: an edge of G
belongs to H if and only if its flow value is 1. Thus, we can say that a given even subgraph
determines a Z2-flow, or that an even subgraph is determined by a given Z2-flow. Hence
for every graph there is a one-to-one correspondence between its parity subgraphs and its
Z2-flows.

In particular, if {P1, P2, P3} is a triad in a cubic graph G, then the set {P ′

1, P
′

2, P
′

3}
consisting of the complements P ′

i = E(G) − Pi, is a covering of G by three even subgraphs.
The weight of the triad then equals the number of 2-factors in {P ′

1, P
′

2, P
′

3}.
Our first result shows that triads of parity subgraphs in a cubic graph are essentially

Fi-colorings.

Theorem 3.1. In every cubic graph there exists a one-to-one correspondence between the

triads of weight w and the F7−w-colorings.
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Proof. Let G be a cubic graph, and let {P1, P2, P3} be a triad of weight w in G where
0 ≤ w ≤ 3. We may assume that 1-factors of the triad are listed first. We show that
G can be F7−w-colored. Define a mapping φ : E(G) → Z2 × Z2 × Z2 by setting φ(e) =
(φ1(e), φ2(e), φ3(e)) where φi(e) = 0 if and only if the edge e belongs to Pi. Observe that
each coordinate mapping φi is the characteristic function of an even subgraph. Hence φi

is a Z2-flow. As P1 ∩ P2 ∩ P3 = ∅, no edge receives the value (0, 0, 0) by φ. By a direct
verification one can easily see that this coloring does not use the first w of the following
lines in the Fano plane: l1 = {(0, 0, 1), (0, 1, 0), (0, 1, 1)}, l2 = {(0, 0, 1), (1, 0, 0), (1, 0, 1)},
l3 = {(0, 1, 0), (1, 0, 0), (1, 1, 0)}. For example, if P1 is a 1-factor, then at each vertex of G
the colors of exactly two edges have their first coordinate equal to 1. This excludes the line
l1, but not l2 and l3. The situation is similar for P2 and P3. Finally, it follows from the
definition that two distinct triads result in two distinct F7−w-colorings.

Let, on the other hand, φ = (φ1, φ2, φ3) be a F7−w-coloring which omits the first w of
the lines l1, l2, and l3 described above. For i = 1, 2, 3 define Pi to be the spanning subgraph
formed by the set of all edges e for which φi(e) = 0. Since each φi is a Z2-flow on G, the
subgraph Pi is a complement of an even subgraph and therefore a parity subgraph of G.
As the triple (0, 0, 0) does not occur in the Fano plane, we have P1 ∩ P2 ∩ P3 = ∅. Thus
{P1, P2, P3} forms a triad.

Note that the Fano plane contains exactly one line with 0 on the i-th coordinate of all its
three points, namely the line xi = 0 which is exactly the line li. Therefore, Pi is a 1-factor
only if the line li is not used in the coloring. It follows that the weight of {P1, P2, P3} equals
w.

Theorem 3.1 with m = 3 implies that Conjecture 2.2 is equivalent to an older conjecture
of Fan and Raspaud [12] asserting that in every bridgeless cubic graph there exist three
perfect matchings with no edge in common. This equivalence was first proved by Máčajová
and Škoviera [26].

Before proceeding with the main result we introduce another important tool. Given a
graph G and a spanning subgraph H ⊆ G, we define the quotient graph G/H of G by H to
be the graph obtained from G by contracting each component of H into a single vertex. In
addition, for any spanning subgraph K of G we set K/H to be the subgraph (K ∪ H)/H
of G/H . Note that in general the quotient graph K/H may have multiple edges and loops
even when K is simple.

By using a straightforward flow argument one can establish the following useful property
of the quotient mapping G→ G/H :

If P is a parity subgraph of G, then P/H is a parity subgraph of G/H .

We are now ready for the main result.
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A4A5A6

(0,1,1)

(1,0,1)(1,0,0)
(0,1,0)

(0,0,1)(1,1,1) (1,1,0) (1,1,1)

(1,2) (1,2)

(0,2)

(0,1,1)

(0,1,0)
(1,0,0) (1,0,1)

(0,0,1) (1,1,0)

(1,0,0) (1,0,1)
(0,1,0)

(0,0,1)(1,1,1) (1,1,0)

(1,1)

(2,2) (2,1)

(1,1)

(0,0)

(1,2)

(0,2)(0,1)

(2,0) (2,1)(2,2) (2,0)

(0,0)

(1,1)

(2,2) (2,1)

F4F5F6

(0,1) (0,2)

(1,0)

(0,0)

(2,0)

Figure 4: Projective and affine configurations in Theorem 3.2
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Theorem 3.2. Let G be a bridgeless cubic graph and let i ∈ {4, 5, 6}. Then G admits an

Fi-coloring if and only if it admits an Ai-coloring.

Proof. An Ai-coloring induces an Fi-coloring for each i ∈ {4, 5, 6} because the configuration
Fi is a homomorphic image of the configuration Ai. For the converse, we use a method
similar to that of Holroyd and Škoviera [18, Lemma 5.2]. Assume that a cubic graph G has
an Fi-coloring for some i ∈ {4, 5, 6}. We want to show that G also has an Ai-coloring. By
Theorem 3.1, G contains a triad {P1, P2, P3} of weight w = 7 − i. We may assume that
1-factors are listed first in the triad. In particular, the parity subgraph P1 is a 1-factor.

Before constructing an Ai-coloring of G, we modify the triad {P1, P2, P3} to obtain a new
triad {Q1, Q2, Q3} with a more convenient structure. Let F be the 2-factor of G comple-
mentary to P1. Let j ∈ {1, 2, 3}. If Pj is a 1-factor, set Qj = Pj. If Pj is not a 1-factor,
we proceed as follows. Since Pj is a parity subgraph of G, the quotient Pj/F is a parity
subgraph of G/F . Observe that every graph contains an acyclic parity subgraph. Let P ′

j

be an acyclic parity subgraph of Pj/F . There exists a parity subgraph Qj of G such that
Qj ∩ P1 = P ′

j . Indeed, we construct Qj by first setting Qj := P ′

j. Next, we add some edges
of F to Qj as follows. For each circuit C := v1v2 . . . vn of the 2-factor F , we proceed around
the circuit from v1 to vn, and we add the edge vivi+1 to Qj if vi is incident to 0 or 2 edges of
Qj (the indices are taken modulo n). The fact that we obtain a parity subgraph of G follows
from the fact that P ′

j is a parity subgraph of G/F , hence the number of edges of P ′

j leaving
C has the same parity as the length n of C. Since Q1 ∩Qj = P1 ∩Qj ⊆ P1 ∩ P

′

j , it follows
that Q1 ∩Q2 ∩Q3 = ∅.

In order to derive an affine coloring from {Q1, Q2, Q3}, we define a weak 3-edge-coloring

of a cubic graph K to be a mapping θ : E(K) → Z3 such that, at each vertex of K, the
colors are either all distinct or all equal. Furthermore the weakness set of θ is the set of
those vertices of G where the colors are all equal. It is straightforward to see that a mapping
θ = (θ1, θ2) : E(K) → Z3 × Z3 is an AG(2, 3)-coloring of K if and only if both θ1 and θ2 are
weak 3-edge-colorings and their weakness sets are disjoint.

For each j ∈ {2, 3}, we use Qj to define a weak 3-edge-coloring ψj : E(G) → Z3.
If Qj is a 1-factor, color the edges of P1 ∩ Qj and the edges of F \ Qj with the color 1,

the edges of F ∩Qj with the color 2, and the edges of P1 \Qj with 0. The obtained coloring
ψj is a weak coloring, and its weakness set is comprised of the vertices incident to the edges
of P1 ∩Qj .

If Qj is not a 1-factor, the definition of ψj is similar although not so uniform. We keep
the assignment ψj(e) = 0 for each edge e ∈ P1 − Qj . Recall that Qj/F is now a spanning
forest of G/F . Thus we can order the vertices of G/F as w1, w2, . . . , wm in such a way that
each wk is adjacent in Qj/F to at most one of its predecessors. Give the circuits of F the
corresponding ordering C1, C2, . . . , Cm.
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Now color the edges of C1 by 1 and 2 in such a way that two consecutive edges of C1

have the same color if and only if the third edge incident with their common vertex belongs
to Qj ∩ P1. Furthermore, for each edge f ∈ Qj ∩ P1 incident with C1 define ψj(f) to be the
color of the two adjacent edges of C1. Note that such a coloring is possible since Qj/F is a
parity subgraph of G/F .

Process the circuits of F in order. If an edge t of Qj ∩P1 is incident with a circuit Ck and
with some predecessor, assign the two adjacent edges of Ck the color ψj(t) already defined.
Extend the coloring to the whole of Ck only using the colors 1 and 2 subject to the condition
that two consecutive edges of Ck have the same color if and only if they are incident with
an edge of Qj ∩ P1. Continue by defining ψj(f) for each edge f ∈ Qj ∩ P1 incident with Ck

to be the color of the two adjacent edges of Ck. Since there is at most one adjacency with a
predecessor circuit, the result is a weak 3-edge-coloring of G with weakness set consisting of
the vertices incident with an edge of Qj ∩ P1.

Since both Q2∩P1 and Q3∩P1 are matchings and (Q2∩P1)∩(Q3∩P1) = Q1∩Q2∩Q3 = ∅,
the weakness sets of ψ2 and ψ3 are disjoint and the pair (ψ2, ψ3) is a proper affine edge-
coloring.

By combining the possibilities for ψ2 and ψ3 around any given vertex of G, we can verify
that the coloring ψ = (ψ2, ψ3) uses the first i of the following lines of the affine plane AG(2, 3):

{(0, 0), (1, 1), (2, 2)}, {(0, 0), (1, 2), (2, 1)}, {(2, 0), (2, 1), (2, 2)},

{(0, 2), (1, 2), (2, 2)}, {(0, 1), (1, 1), (2, 1)}, and {(1, 0), (1, 1), (1, 2)}.

As these first i lines form an Ai-configuration, ψ is the Ai-coloring sought.

We finish this section with a theorem which establishes another necessary and sufficient
condition for the existence of an F5-coloring. A cut in G is the set of all edges that have
exactly one vertex in each of X and X ′ for some partition {X,X ′} of V (G). A cut is odd if
either X or X ′ has an odd number of vertices. Observe that in a cubic graph, a cut is odd
whenever it contains an odd number of edges.

Theorem 3.3. A cubic graph G admits an F5-coloring if and only if it contains two 1-factors
M1 and M2 such that each odd cut in G has an edge outside M1 ∩M2.

Proof. Assume that G has an F5-coloring. Then, according to Theorem 3.1, it contains a
triad of weight 2, that is to say, two 1-factors M1 and M2 and a parity subgraph P with
no edge in common. Since P is a parity subgraph of G, it intersects every odd cut of G.
However, M1∩M2∩P = ∅, so every odd cut must have an edge outside M1∩M2, as asserted.

For the converse, assume that G contains two 1-factors M1 and M2 such that each odd
cut has an edge outside M1 ∩M2. Then every component of H = G \ (M1 ∩M2) has even
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order. It is a routine matter to find a parity subgraph K of G included in H . Consequently,
M1 ∩M2 ∩K = ∅. Thus {M1,M2, K} is a triad of weight 2 in G. By Theorem 3.1, G admits
an F5-coloring.

4 Colorings by general Steiner triple systems

We illustrate the power of Theorem 3.2 by giving a new proof of the main result of the paper
by Holroyd and Škoviera [18], which states that every bridgeless cubic graph has an S-
coloring for each non-trivial Steiner triple system S. Máčajová and Škoviera [26] established
the following.

Theorem 4.1. [26] Every bridgeless cubic graph G admits an F6-coloring.

Before the next theorem, we need a lemma proved by Holroyd and Škoviera [18, Section
5].

Lemma 4.2. Every non-trivial Steiner triple system either contains a copy of F6, a copy of

D8 or a copy of D9
∼= A6.

f

b c

e

a

g

d

Figure 5: The C14-configuration

Theorem 4.3. [18] Every bridgeless cubic graph has an S-coloring for every non-trivial

Steiner triple system S.

Proof. By Theorems 4.1 and 4.1, every bridgeless cubic graph admits both an F6-coloring
and a D9-coloring. Since D8 is a homomorphic image of D9 (which arises by identifying the
points h and i of D9, see Figure 1), every bridgeless cubic graph can be D8-colored as well.
By Lemma 4.2, at least one of these three configurations is contained in every non-trivial
Steiner triple system S. Thus every bridgeless cubic graph has an S-coloring for every such
S, as stated.
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5 Abelian colorings

Given an abelian group A, an A-coloring of a cubic graph G is an assignment of non-zero
elements of A to the edges of G in such a way that the sum of colors at each vertex equals
0. An A-coloring can be either improper or proper according to whether adjacent edges can
have or must not have equal colors.

The study of abelian colorings was initiated by Archdeacon [1] in 1986 (see also [2]). In
response to his paper, Máčajová et al. [27] proved that every bridgeless cubic graph has
an improper A-coloring for every abelian group A of order at least 5, thereby establishing
Archdeacon’s conjecture. Proper abelian colorings have been first studied by Máčajová et
al. [27], where it was indicated that the analogous existence problem for proper colorings
is much more difficult. In this section we deal with proper A-colorings in a greater detail.
Since henceforth we consider only proper A-colorings, we omit the adjective “proper”. In
particular, we say that a cubic graph is A-colorable if it admits a proper A-coloring.

Let A be an abelian group. Form a partial Steiner triple system C(A) by taking all 3-
element subsets {x, y, z} of A−{0} with x+y+z = 0 as its blocks. Then a proper A-coloring
is nothing but a C(A)-coloring. This fact enables us to investigate abelian colorings by the
methods developed in the previous sections.

An abelian group A is class 1 or class 2 according to whether the configuration C(A) is
class 1 or class 2. If |A| ≤ 5 and A is not the Klein group Z2 × Z2, then A is neither class
1 nor class 2, because C(A) = ∅. The Klein group and the cyclic groups of order 6, 7, 8,
and 9 are class 1. If |A| ≥ 6, the configuration C(A) covers all non-zero elements of A; in
particular C(A) 6= ∅.

We summarize these facts in the following proposition whose proof is left to the reader.

Proposition 5.1. Let A be an abelian group.

(1) The configuration C(A) is non-empty if and only if A = Z2×Z2 or |A| ≥ 6. Moreover,

if C(A) 6= ∅ then C(A) covers all points of A− {0}.
(2) If A is one of Z2 × Z2, Z6, Z7, Z8, and Z9, then a cubic graph is A-colorable if and

only if it is 3-edge-colorable.

Our next aim is to show that all sufficiently large groups are class 2.

Theorem 5.2. If A is an abelian group of order at least 12 or A = Z2 ×Z2 ×Z2, then every

bridgeless cubic graph is A-colorable.

Proof. Let us express A as a direct product of cyclic groups—say A = Zk1
×Zk2

× · · ·×Zkm

where k1 ≥ · · · ≥ km. If k1 = 2, then also k2 = k3 = 2, so A contains a subgroup B
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group a b c d e f g h i

Zk1

k1 = 12 or k1 ≥ 15 1 k1 − 3 4 k1 − 1 k1 − 5 2 3 8 k1 − 6
k1 = 13 or k1 = 14 1 k1 − 3 5 k1 − 2 k1 − 6 2 4 9 k1 − 7

Zk1
× Zk2

k1 = 4, k2 = 4 (0, 2) (3, 2) (1, 3) (0, 3) (3, 3) (1, 0) (0, 1) (2, 3) (2, 1)
k1 = 5, k2 = 5 (0, 1) (4, 4) (1, 2) (0, 4) (4, 2) (1, 0) (0, 3) (2, 4) (3, 3)

k1 = 6 or k1 ≥ 10, k2 = 2
or (1, 0) (k1 − 3, 0) (1, 1) (2, k2 − 1) (k1 − 2, k2 − 1) (2, 0) (0, 1) (5, 1) (k1 − 3, k2 − 1)

k1 ≥ 6, k2 ≥ 3
k1 = 8, k2 = 2 (1, 0) (k1 − 1, 1) (2, 1) (k1 − 1, 0) (1, k2 − 3) (1, 0) (0, 3) (0, 4) (0, k2 − 2)

Zk1
× Zk2

× Zk3

k1 = 3, k2 = 3, k3 = 3 (0, 0, 1) (1, 1, 1) (2, 1, 1) (0, 1, 1) (1, 2, 1) (2, 2, 1) (0, 2, 1) (1, 0, 1) (2, 0, 1)
k1 = 4, k2 = 2, k3 = 2 (0, 1, 0) (3, 1, 0) (2, 1, 1) (3, 0, 1) (2, 0, 1) (1, 0, 0) (1, 0, 1) (3, 1, 1) (1, 1, 1)

Table 1: D9-configuration in some abelian groups.

isomorphic to Z2 × Z2 × Z2. By Jaeger’s 8-flow theorem [21], G has a nowhere-zero B-flow
which is a Z2 × Z2 × Z2-coloring of G.

Now let k1 ≥ 3. Consider the subgroup B of A isomorphic to Zk1
×Zk2

×· · ·×Zkr
, where

r is the smallest integer such that |B| ≥ 12. Thus, r ≤ 3. Taking into account that the direct
product of cyclic groups of coprime orders is again cyclic, it can be deduced from Table 1
that for each such B the configuration C(B) contains a copy of D9. Since C(B) ⊆ C(A),
there is a copy of D9 in C(A) for every abelian group A of order at least 12. The result now
follows from the fact that, by Theorem 4.1, every bridgeless cubic graph D9-colorable.

There are exactly four non-isomorphic abelian groups not treated by Proposition 5.1 and
Theorem 5.2, namely Z4×Z2, Z3×Z3, Z10

∼= Z5×Z2, and Z11. We call them the exceptional

groups. Since each of them contains an F4-configuration, we propose the following conjecture.

Conjecture 5.3. Every bridgeless cubic graph has an A-coloring for every abelian group

A ∈ {Z4 × Z2,Z3 × Z3,Z10,Z11}.

It can be verified that the configurations corresponding to the exceptional groups are all
non-isomorphic and neither of them can be mapped to another. Surprisingly, however, the
smallest among the exceptional groups, the group Z4 × Z2, plays a special role.

Theorem 5.4. If a cubic graph is Z4 × Z2-colorable, then it is A-colorable for every A ∈
{Z3 × Z3,Z10,Z11}.

Proof. If a cubic graph G has a Z4 × Z2-coloring, then it also has an F5-coloring. The
isomorphism C(Z4 × Z2) ∼= F5 is indicated in Figure 6. By Theorem 3.2, G has an A5-
coloring as well. Since for each A ∈ {Z3 × Z3,Z10,Z11} the configuration C(A) contains a
copy of A5 (see Figure 7), G has an A-coloring for each A ∈ {Z3 × Z3,Z10,Z11}.
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(3,0)

(1,1)(3,1)

(2,0)(0,1) (2,1)

(1,0)

Figure 6: C(Z4 × Z2) ∼= F5
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(2, 0)
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(1, 0)

(2, 2) 3 6

3
7
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Figure 7: A5-configuration in C(Z3 × Z3), C(Z10), and C(Z11)

6 Variations on an abelian theme

We introduce three different modifications of the concept of an abelian coloring. In the first
of them we simply extend the set of available colors with the zero elements of the group.
The other modifications draw their inspiration from the analogy with nowhere-zero flows.

Define an extended A-coloring of a cubic graph to be a proper edge-coloring by elements
of A, including 0, such that the colors of any three pairwise adjacent edges sum to 0. Let
C∗(A) be the extended configuration for A whose blocks are all three-element subsets of A.
An extended A-coloring is nothing but a C∗(A)-coloring.

The following theorem yields a similar classification of abelian groups as Proposition 5.1
and Theorem 5.2 for the case of the abelian colorings.

Theorem 6.1. Let A be an abelian group.

(1) The configuration C∗(A) is non-empty if and only if |A| ≥ 3.
(2) If A is any of Z3, Z4, Z5, Z6, and Z2 × Z2, then a cubic graph has an extended

A-coloring if and only if it is 3-edge-colorable.
(3) Let A be an abelian group of order at least 8. Then every bridgeless cubic graph has

an extended A-coloring.
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Proof. Claim (1) is trivial. Since for each group listed in (2) the configuration C∗(A) maps
to the trivial configuration I, every extended A-coloring induces a 3-edge-coloring.

We now prove (3). Let A be an abelian group. If |A| ≥ 12 or A = Z2 ×Z2 ×Z2, then the
conclusion follows from Theorem 5.2. Thus we are left with groups such that 8 ≤ |A| < 12
other than A = Z2 × Z2 × Z2. As in the proof of Theorem 5.2, it is sufficient to show that
C∗(A) contains a copy of one of the configurations F6, D8, and D9; this is a consequence of
Theorem 4.1 and the fact that D8 is a homomorphic image of D9. By a direct verification
one can see that C∗(Z4 × Z2) contains F6, C

∗(Z8) and C∗(Z4 × Z2) contain D8, and C∗(Z9),
C∗(Z3 × Z3), C

∗(Z10), and C∗(Z11) contain D9.

The only non-trivial abelian group not covered by Theorem 6.1 is Z7. The extended
configuration for this group is isomorphic to the mitre-configuration introduced in Section 2.
Thus extended Z7-colorings provide the Mitre Conjecture from Section 2 with an algebraic
interpretation.

We proceed with the second variation on the definition of an abelian coloring. The
relationship between flows with values in finite abelian groups of order k and integer nowhere-
zero k-flows suggests the following definition. An integer k-coloring of a cubic graph G is
a Z-coloring σ satisfying the condition that 0 < |σ(e)| < k for each edge e of G. Let Ik be
the configuration whose points are all non-zero integers n with |n| < k and blocks are all
three-element subsets with zero sum. Then an integer k-coloring is exactly an Ik-coloring.

As we show next, integer colorings are closely related to both Fano and abelian colorings.

Theorem 6.2. The following two statements hold for every bridgeless cubic graph G.

(1) For i = 4, 5 and 6, if G admits an Fi-coloring, then it also admits an integer (i+ 2)-
coloring.

(2) If G admits an integer 6-coloring, then it admits both a Z10-coloring and a Z11-

coloring.

Proof. (1) Let i ∈ {4, 5, 6} and assume that G has an Fi-coloring. Theorem 3.2 implies that
G also admits an Ai-coloring. As shown in Figure 8, the configuration Ii+2 contains a copy
of Ai. Hence G also admits an integer (i+ 2)-coloring.

(2) Let σ be an integer 6-coloring of G. Define σ′(e) as the reduction of σ(e) modulo
10 and σ′′(e) as the reduction of σ(e) modulo 11. Since reduction modulo 11 establishes a
bijection from the point-set of I6 to Z11 −{0} that preserves the zero sum, we see that σ′′ is
a Z11-coloring. The argument for σ′ is similar, except that the elements 5 and −5 collapse
into the same element of Z10 − {0}. Fortunately, in σ, the colors 5 and −5 cannot occur on
adjacent edges, because otherwise the color of the third edge at their common vertex would
have to be 0. Therefore σ′ is a proper edge-coloring and consequently it is a Z10-coloring of
G.
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Figure 8: Ai-configuration in Ii+2

By combining the previous result with Theorem 4.1 we obtain the following corollary.

Corollary 6.3. Every bridgeless cubic graph has an integer 8-coloring.

Observe that I5 is a class 1 configuration while I6 contains a copy of F4. This leads us
to propose the following two conjectures, the latter being a weaker form of the former.

Conjecture 6.4. Every bridgeless cubic graph admits an integer 6-coloring.

Conjecture 6.5. Every bridgeless cubic graph admits an integer 7-coloring.

As our third variation we could consider extended integer k-colorings defined analogously
as above except that 0 would become an admissible color. This definition, however, does
not bring anything new: the extended configuration I∗4 is isomorphic to the mitre while I∗5
contains A6. Thus a bridgeless cubic graph has an extended integer 4-coloring if and only
if it admits an extended Z7-coloring. Finally, by Theorem 4.1, every bridgeless cubic graph
has an extended integer 5-coloring.

7 Concluding remarks

We have presented a systematic approach to edge-colorings of cubic graphs based on configu-
rations with 3-element blocks. There are many other configurations besides those considered
in this paper. Perhaps the first type of configurations to try are so called symmetric config-

urations n3.
In general, a symmetric configuration nk consists of n points and n lines (or blocks)

arranged in such a way that k lines pass through each point, and there are k points on each
line. Furthermore, there is at most one line through any pair of points. With each symmetric
configuration one can associate a bipartite cubic graph, called the incidence graph—or the
Levi graph—of a configuration. The parts of the incidence graph correspond to the points and
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the lines, two vertices being adjacent if the corresponding point and the line are incident. It
is well known [5, Proposition 1] that every bipartite cubic graph of girth at least six uniquely
determines a symmetric configuration, and vice versa. Exchanging the roles of the parts
results in the dual configuration.

Although many interesting symmetric configurations are of geometric origin, the terms
point and line need not have any geometric significance. Symmetric configurations were
defined by Reye [29] in 1876 and as such belong to the oldest combinatorial structures. For
modern investigation of configurations the reader is referred to [4, 5, 16, 17, 28]. In particular,
Betten et al. [4] lists all small n3-configurations.

The smallest symmetric configuration is the Fano plane, the unique 73-configuration.
Its incidence graph is the Heawood graph. There is a single 83-configuration known as the
Möbius-Kantor configuration. It is isomorphic to the affine plane AG(2, 3) minus a point
which in turn is isomorphic to C(Z3 × Z3). Its incidence graph is the generalized Petersen
graph GP (8, 3). There exist exactly three non-isomorphic 93-configurations: the Pappus
configuration from his famous Hexagon Theorem is easily seen to be class 1. Its incidence
graph is the Haar graph H(261) described by Pisanski and Randić [28]. The remaining two
93-configurations are both class 2 and contain a copy of F4, but no copy of F5 or the mitre.

{1,2}

{2,4}

{3,5}

{3,4}

{4,5}

{1,4}{1,3}

{1,5}

{2,5}{2,3}

Figure 9: Desargues configuration

One of the most famous geometric configurations, the Desargues configuration shown in
Figure 9, is a configuration of type 103. Its incidence graph is the generalized Petersen graph
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GP (10, 3). The configuration arises in the following Theorem of Desargues from projective
geometry: If two triangles are perspective from a point, they are perspective from a line, and

conversely ; see, e.g., Coxeter’s textbook [8, p. 238]. Surprisingly, the same configuration
arises in graph theory in connection with the Cycle Double Cover Conjecture [22]. Its more
specific form, the 5-Cycle Double Cover Conjecture (5-CDC), asserts that every bridgeless
graph admits a 5-cycle double cover, that is, a collection of five even subgraphs such that
each edge belongs to exactly two of them. It is well known that the 5-CDC is equivalent
to its restriction on cubic graphs, and currently it is known to be true for cubic graphs of
oddness at most 4 [20].

We next observe that the 5-CDC is equivalent to the statement that the Desargues
configuration colors every bridgeless cubic graph.

Theorem 7.1. A cubic graph has a 5-cycle double cover if and only if it has a D-coloring,

where D is the Desargues configuration.

Proof. Assume that a cubic graph G has a double cover by five even subgraphs H1, . . . , H5.
Color each edge e of G by a two-element subset {j, k} ⊆ {1, 2, . . . , 5} whenever e belongs to
both Hj and Hk. Since every vertex of G is incident with an even number of edges of each Hi

(either zero or two), we deduce that, at every vertex, three of the five even subgraphs must
meet each other. It follows that our coloring is proper and that the color pattern at each
vertex consists of three two-element subsets which are contained in the same three-element
subset of {1, 2, . . . , 5}. In other words, every 5-cycle double cover of G induces a C-coloring
with a configuration C isomorphic to the Desargues configuration depicted in Figure 9. The
converse can be established simply by reversing the arguments.

Another remarkable configuration is the Cremona-Richmnond configuration of type 153.
Following Coxeter [7], it can be defined as follows. Let 1, 2, . . . , 6 be six points of the real
projective 4-space in general position. Consider any two distinct points i and j, and let {i, j}
denote the intersection of the line passing through i and j with the hyperplane determined by
the four other points. In this way we obtain fifteen points which lie by threes on fifteen lines,
each of the lines being the common line of three hyperplanes. The fifteen points and fifteen
lines form the Cremona-Richmond configuration of type 153. The stellar representation of
this configuration given in Figure 10 is due to Boben et al. [5]. The incidence graph is the
well known Tutte 8-cage (see [4, 28]).

The origins of the Cremona-Richmond configuration are quite vague. In algebraic ge-
ometry, it emerged in the studies of families of straight lines on cubic surfaces which were
popular in the second half of the nineteenth century. Cremona [9] seems to have been the
first to give a description which can be interpreted as the list of points and lines of this

21



{1,4}

{4,5}

{1,5}

{2,4}
{5,6}

{2,5}

{4,6}

{3,6}

{3,5}

{3,4}

{2,6}

{1,3}

{1,2}

{2,3}

{1,6}

Figure 10: Cremona-Richmond configuration

configuration. Richmond [30] found its realization by points and lines in the 4-dimensional
projective space over an infinite field.

We now show that the same configuration arises in connection with the famous Fulkerson’s
Conjecture whose origin is in mathematical programming [13]. The conjecture states that
in every bridgeless cubic graph there exists a collection of six perfect matchings such that
each edge belongs to exactly two of them. Such a collection is called a double cover by six
perfect matchings.

Theorem 7.2. A cubic graph has a double cover by six perfect matchings if and only if it

has a CR-coloring where CR is the Cremona-Richmond configuration.

Proof. Assume that a cubic graph G has a double cover by six 1-factors M1, . . . ,M6, and
color every edge e of G by a two-element subset {j, k} ⊆ {1, 2, . . . , 6} whenever e belongs
to both Mj and Mk. In this way, every double cover of G by six 1-factors induces a C-
coloring where C is a configuration whose points are all two-element subsets of {1, 2, . . . , 6}
and three points form a block if and only if their union is the whole {1, 2, . . . , 6}. It is
immediate that C is a 153-configuration. The fact that C is isomorphic to the Cremona-
Richmond configuration follows from the labeling displayed in Figure 10. Again, the converse
implication can be established by reversing the arguments.
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There is another conjecture in graph theory where the Cremona-Richmond configuration
plays an important role, namely the Petersen Coloring Conjecture [23]. The conjecture
states that the edges of every bridgeless cubic graph G can be mapped into the edges of the
Petersen graph in such a way that any three mutually incident edges of G are mapped to
three mutually incident edges of the Petersen graph. Such a mapping is called a Petersen

coloring of G. Let us define a partial Steiner triple system P by taking its points to be the
edges of the Petersen graph and its blocks to be the triples of pairwise adjacent edges. Note
that a Petersen coloring of a graph is nothing but a P -coloring. The configuration P has 15
points and 10 lines. In particular it is not a symmetric configuration. However, it is a routine
matter to verify that P results from the Cremona-Richmond configuration by removing a
parallel class of blocks, i.e., a set of disjoint blocks covering every point. An example of such
a set is indicated in Figure 10 by bold lines. We call P the depleted Cremona-Richmond
configuration.

Theorem 7.3. A cubic graph has a Petersen coloring if and only if it has a P -coloring,

where P is the depleted Cremona-Richmond configuration.

To conclude this section we summarize the conjectures presented in this paper and the
relations between them. In Figure 11, each box represents a conjecture or a theorem. A
box with a bold frame represents a theorem, otherwise it represents a conjecture. Each
conjecture or theorem is encoded either by its name or by the corresponding partial Steiner
triple system. A box containing the symbol of a configuration or of a group C represents the
statement that every bridgeless cubic graph is C-colorable. An arrow between boxes means
that the validity of the “initial” statement implies the validity of the “terminal” statement.

Note that the Petersen graph admits both a 5-cycle double cover and a double cover
by six 1-factors. Thus if a graph G admits a Petersen coloring, then both a 5-cycle double
cover and a double cover by six 1-factors of G can be obtained by “lifting” the corresponding
structure from the Petersen graph to G. This explains the two implications at the bottom of
Figure 11. The first of them also follows from the fact that the depleted Cremona-Richmond
configuration is contained in the Cremona-Richmond configuration.
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[27] E. Máčajová, A. Raspaud, M. Škoviera, Abelian colourings of cubic graphs, Electron.
Notes Discrete Math. 22 (2005), 333–339.
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