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Homomorphism Ramsey Subdivisions

What is a sparse graph?

@ No answer for a single graph — graph sequence, graph class.
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Introduction

What is a sparse graph?

properties? FO-properties?

bounded
degree
bounded
ultra sparse .
expansion

minor closed

Nowhere dense classes

No answer for a single graph — graph sequence, graph class.
Existence of qualitative jumps? thresholds? Uniqueness?

Based on density? subgraph counting? decomposition
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Average degree and minimum degree

Every graph G has a non-empty induced subgraph H such that

14 16l
o(H) > — > —+.
H)=Ta = Tg

Girth



Density

Average degree and minimum degree

Every graph G has a non-empty induced subgraph H such that

11l 6l
%) > > —,
H)=Ta = Tg

For every € > 1/|G], there exists a non-empty induced subgraph H,
of G such that
1G]

5(He)2(1—e)m and  [[He|| > €|[G].
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Degeneracy

A graph G is k-degenerate if each nonempty subgraph of G
contains a vertex of degree at most k. The maximum average
degree of G, denoted mad(G), is the maximum average degrees of
the subgraphs of G:

2||H]|

mad(G) = max d(H) = max TH



Density

Degeneracy

A graph G is k-degenerate if each nonempty subgraph of G
contains a vertex of degree at most k. The maximum average
degree of G, denoted mad(G), is the maximum average degrees of
the subgraphs of G:

o T — e 2N
mad(G) = max d(H) = max A

Thus:

k> |mad(G)| = G is k-degenerate = mad(G) < 2k.



Density

Density and other parameters

|G[A]]] < d|A] (mad, degeneracy)
IGIAIl < k(4] - 1) (arboricity)
IGIA]|| < 2|Al—3 (3T2, contacts of segments)
|G[A]l| <3|A] -6 (Planarity, Euler)
IG[A]]] < (k+9)(JA|—1) (9 Dragons Tree Problem)

Connection with minors.
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Minors

e G <,, H: minor relation
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and Thomas 1993; true for almost all graphs)
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Minors

Minors

e G <,, H: minor relation
o well quasi order (Robertson, Seymour)
o Hadwiger's conjecture (proved for k < 6 Robertson, Seymour,
and Thomas 1993; true for almost all graphs)
@ G <; H: topological minor relation
e not a well quasi order
o Hajés' conjecture (false for almost all graphs, but true if large
girth)
o G <; H: immersion relation
o well quasi order (Robertson, Seymour; 2010)
o conjecture of Abu-Khzam and Langston (proved for k <7,
DeVos, Kawarabayashi, Mohar, and Okamura 2009)
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Minors and minimum degree

Theorem (Komlés and Szemerédi, Bollobas and Thomason)

There exists a constant ¢ such that every graph G with minimum
degree at least ck? satisfies h(G) > k.




Introduction Density Minors Orientation Homomorphism Ramsey Subdivisions Girth

Minors and minimum degree

Theorem (Komlés and Szemerédi, Bollobas and Thomason)

There exists a constant ¢ such that every graph G with minimum
degree at least ck? satisfies h(G) > k.

Theorem (Kostochka, Thomason)

There exists a constant v =~ 0.319 such that every graph G with
minimum degree at least vk+/log(k) satisfies h(G) > k.
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Minors and minimum degree

Theorem (Komlés and Szemerédi, Bollobas and Thomason)

There exists a constant ¢ such that every graph G with minimum
degree at least ck? satisfies h(G) > k.

Theorem (Kostochka, Thomason)

There exists a constant v =~ 0.319 such that every graph G with
minimum degree at least vk+/log(k) satisfies h(G) > k.

A

Theorem (Norine, Thomas)

Vt AN, if G is (t — 2)-connected, |G| > N and Ky £, G, then
dX C V(G), |X| <t—5st G— X is planar.

=Gl <(t-2)I6] - (5).
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Immersions and minimum degree

Theorem (DeVos, Mohar,. .. ?7)

Every simple graph of minimum degree Ck contains an immersion
of Kk.
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Immersions and minimum degree

Theorem (DeVos, Mohar,. .. ?7)

Every simple graph of minimum degree Ck contains an immersion
of Kk.

Conjecture (DeVos, Kawarabayashi, Mohar, and Okamura;

2009

Every simple graph of minimum degree k — 1 contains an
immersion of K.
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Immersions and minimum degree

Theorem (DeVos, Mohar,. .. ?7)

Every simple graph of minimum degree Ck contains an immersion
of Kk.

Conjecture (DeVos, Kawarabayashi, Mohar, and Okamura;

2009

Every simple graph of minimum degree k — 1 contains an
immersion of K.

@ implies the conjecture of Abu-Khzam and Langston;
@ proved for k < 7.
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Ordering and orientation related parameters

@ Ordering and orientation related parameters
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Orientation

A graph G has an acyclic orientation G such that A=(G) < k if
and only if G is k-degenerate.
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Orientation

Lemma

A graph G has an acyclic orientation G such that A=(G) < k if
and only if G is k-degenerate.

Lemma

Let G be a graph and let A : V(G) — N. There exists an
orientation of G such that every vertex v satisfies d™(v) < A(v) if
and only if

| A\

VACV(G), IGIAIl < 3 Aw).

veA

Moreover, if ||G|| = }_,cy(g) Mv) there exists an orientation of G
such that d~(v) = A(v).
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Ordering related parameters

Consider the set of all linear orderings L of V(G). Define a directed
graph with (x,y) € E if x <; y and 3 xy-path P of length at most
k s.t.

Vz € P (internal) x < z — Wﬁ):ck(G)
Vz € P (internal) y < z — Acck(G)

P is increasing with respect to L — Transg(G)
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Ordering related parameters

Consider the set of all linear orderings L of V(G). Define a directed
graph with (x,y) € E if x <; y and 3 xy-path P of length at most
k s.t.

e

Vz € P (internal) x < z — WAcck(G)
—

Vz € P (internal) y < z — Acck(G)

P is increasing with respect to L — Transg(G)

Generalized coloring numbers (Kierstead and Yang):
weolg(G) =1+ mLin AT (WAcck(G))

coli(G) = 1+ min A~ (Actk(G)).



Orientation

Ordering related parameters

Consider the set of all linear orderings L of V(G). Define a directed
graph with (x,y) € E if x <; y and 3 xy-path P of length at most
k s.t.

e

Vz € P (internal) x < z — WAcck(G)
—

Vz € P (internal) y < z — Acck(G)

P is increasing with respect to L — Transg(G)

Generalized coloring numbers (Kierstead and Yang):
weolg(G) =1+ mLin AT (WAcck(G))

coli(G) = 1+ min A~ (Actk(G)).

Also, max X (Trans,(G)), max w(Transg(G)).
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Orientation and Counting

Lemma
Let G,H be graphs. If G is k-degenerate then it includes at most

a(H)

|Aut Z Acyc,(H) kHI=t |G|t

copies of H, where |Aut(H)| is the number of automorphisms of H,
Acyc,(H) is the number of acyclic orientations of H with t sinks,
and «(H) is the independence number of H.
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Orientation and Counting

Lemma
Let G,H be graphs. If G is k-degenerate then it includes at most

a(H)

|Aut Z Acyc,(H) kHI=t |G|t

copies of H, where |Aut(H)| is the number of automorphisms of H,
Acyc,(H) is the number of acyclic orientations of H with t sinks,
and «(H) is the independence number of H.

Counting Subdivisions of H

Under what conditions is it true that the number of
“< d-subdivision of H" in G is bounded by ¢ |G|*(")?
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Orientation and Counting

a(H)

(#HC G) < Z Acye,(H) kM=t |G|t

]A t(H)| <
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Homomorphism related parameters

© Homomorphism related parameters
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Homomorphism related parameters

o
2&/@\;

cliqgue number chromatic number
independence number decompositions
hom(F, -) FO-definable colorings

Girth

@
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Homomorphisms

A homomorphism f : G — H is an edge-preserving mapping
V(G) — V(H). Category with product G x H and coproduct
G+ H:
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Homomorphism equivalence and core

For any graph G there is up to isomorphism a unique graph G’
which is homomorphically equivalent to G and which has the
minimal number of vertices. Such a graph G’ is called the core of
G, and it is isomorphic to an induced subgraph of G.

(Graph /| == ,—): homomorphism order
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Homomorphism equivalence and core

For any graph G there is up to isomorphism a unique graph G’
which is homomorphically equivalent to G and which has the
minimal number of vertices. Such a graph G’ is called the core of
G, and it is isomorphic to an induced subgraph of G.

(Graph /| == ,—): homomorphism order

Theorem (Density of homomorphism order)

For every pair of graphs Gi, Gy such that G = G> and Gy » K»
there exists a graph G such that

Gl == G = Go.
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Ramsey theory and extremal graph theory

@ Ramsey theory and extremal graph theory
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Ramsey theory

Theorem (Ramsey)

Vni,...,ng there exists R = R(ni1,...,nx) (Ramsey number)
which is minimum such that for every set X of cardinality at least
R and every coloring of the set () by k colors there exists i,

1 <i<k, and a subset Y C X such that |Y| > n; and (\2/) is
monochromatic of color i.
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Extremal graph theory

Theorem (Erdés, Simonovits, Stone)

ex(n, H) = <1 _ X(H;_J <'2’) + o(r?).
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Extremal graph theory

Theorem (Erdés, Simonovits, Stone)
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Extremal graph theory

Theorem (Faudree, Simonovits, 1983)

Let Cp, « denote the graph obtained by joining two vertices m
internally disjoint paths of length k. Then

ex(n, Cmy) = O(n ).
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Extremal graph theory

Theorem (Faudree, Simonovits, 1983)

Let Cp, « denote the graph obtained by joining two vertices m
internally disjoint paths of length k. Then

1

ex(n, Cnx) = O(n'T%).

Theorem (Alon, Krivelevich and Sudakov)

Let H be a bipartite graph with maximum degree r on one side.
Then there exists cy (depending on H) such that

ex(n, H) < cyn 7.

A
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Shallow subdivisions

@ Shallow subdivisions
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Density and clique number of shallow subdivisions

Theorem (Kostochka, Pyber 1988)

let0<e<landteN. Letp=|1+(4/€)(L+2logt)|. Any
graph G with ||G|| > 22/(t=V¢t . |G|'*¢ contains a < p-subdivision
of Kt-
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Density and clique number of shallow subdivisions

Theorem (Kostochka, Pyber 1988)

let0<e<landteN. Letp=|1+(4/€)(L+2logt)|. Any
graph G with ||G|| > 22/(t=V¢t . |G|'*¢ contains a < p-subdivision
of Kt-

Theorem (Jiang, 2009)

Let 0 < e<1andteN. Then there exists N = N(e, t) such that
any graph G of order at least N with |G| > 27" - |G|'*¢ contains
a < p-subdivision of K;, where p = max{2, 12 log %} — 1, hence

€

10log p

ex(n, Kt(gp)) < TPt for n > N(t,¢).

A
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Density and chromatic number of shallow subdivisions

Every graph G contains a subgraph with minimum degree at least
x(6) — 1.
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Density and chromatic number of shallow subdivisions

Lemma

Every graph G contains a subgraph with minimum degree at least
x(6) — 1.

Lemma (Dvorak, 2007)

Let ¢ > 4 be an lntefer and let G be a graph with minimum degree
d>56(c—1) |og|§g|og =k Then the graph G contains a
subgraph G’ that is the 1-subdivision of a graph with chromatic

number c.

A
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Girth and Chromatic number: Erdés graphs

Theorem (Erdés, 1959)

For all integers c, g there exists a graph with girth at least g and
chromatic number at least c.

| A

Proof.

A random graph on n vertices and edge-probability n(1=8)/¢ has,
with high probability, at most n/2 cycles of length at most g, but
no independent set of size n/2¢c. Removing one vertex in each short
cycle leaves a graph with girth at least g and chromatic number at
least c. O

v
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Girth and Chromatic number: Erdés graphs

Theorem (Erdés, 1959)

For all integers c, g there exists a graph with girth at least g and
chromatic number at least c.

Proof.

A random graph on n vertices and edge-probability n(1=8)/¢ has,
with high probability, at most n/2 cycles of length at most g, but
no independent set of size n/2¢c. Removing one vertex in each short
cycle leaves a graph with girth at least g and chromatic number at
least c. O

| A\

Remark
This graph has Q(n'*1/8) edges.

| \

&
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Bollobas' construction

Theorem (Bollobas, 1978)

Let k > 4,c = {4k(1 +logk)} and Ao = A(k) = {4ec}. Then for
every sufficiently large n there is a graph G of order n such that
A(G) < Ao, x(G) > k and g(G) > go, where gy is s.t.

1
25 (20)8° < 1z
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Bollobas' construction

Theorem (Bollobas, 1978)

Let k > 4,c = {4k(1 +logk)} and Ao = A(k) = {4ec}. Then for
every sufficiently large n there is a graph G of order n such that
A(G) < Ao, x(G) > k and g(G) > go, where gy is s.t.

1
5(2c)’5"° € S

Proof.
Let C={G:|G|=n,||G| = ¢cn} and C1,C5,C5 C C s.t.

| A

InCi,  3F CE(G),|F| < n/k? A(G — F) < Ao.
In Co, G has < n/3k? cycles of length < go.
InCs,  [W[=I[n/(k-1)]= [[GIW]]| > [2n/3K?].

Then, |C1],|Ca], |C3| > %|C| hence C; NC, NC3 # 0. O @
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What if a minor is excluded?

Theorem (Galluccio, Goddyn, Hell 2001)

Let H be a fixed graph.
Any H-minor free graph G of high enough girth admits a
homomorphism to a large odd circuit.
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What if a minor is excluded?

Theorem (Galluccio, Goddyn, Hell 2001)

Let H be a fixed graph.
Any H-minor free graph G of high enough girth admits a
homomorphism to a large odd circuit.

Qualitative jump somewhere between proper minor closed classes
and bounded degree classes.

Existence of high girth graphs with chromatic number > 2 4 ¢
linked to existence of expanders?
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A general case?

A conjecture of Erdés and Hajnal

For all integers c, g there exists an integer f(c, g) such that every
graph G of chromatic number at least f(c, g) contains a subgraph
of chromatic number at least ¢ and girth at least g.

The case g = 4 was proved by R3dl, while the general case is still
open.
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Girth and average degree

A conjecture of Thomassen

For all integers c, g there exists an integer f(c, g) such that every
graph G of average degree at least f(c, g) contains a subgraph of
average degree at least ¢ and girth at least g.

@ case g = 4: every graph can be made bipartite by deleting at
most half of its edges (also kills odd g)

@ case g = 6: Kuhn and Osthus (2002)



Relational Structures and First-Order
Logic
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Generalization

@ Relational structures generalize graphs and directed graphs,. ..

e First order logic generalize subgraphs, homomorphisms from a
template,. ..
— local properties

@ Monadic second order logic generalize minors, colorings,
homomorphisms to a template,. ..
— global properties



Relational Structures

A relational vocabulary o is a finite set of relation symbols, each
with a specified arity. A o-structure A consists of a universe A, or
domain, and an interpretation which associates to each relation
symbol R € o of some arity r, a relation R” C A".
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domain, and an interpretation which associates to each relation
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Relational Structures

A relational vocabulary o is a finite set of relation symbols, each
with a specified arity. A o-structure A consists of a universe A, or
domain, and an interpretation which associates to each relation
symbol R € o of some arity r, a relation R” C A".

A o-structure B is a substructure of A if B C A and RB C RA for
every R € 0. It is an induced substructure if RE = RA N B" for
every R € o of arity r.

A homomorphism A — B between two o-structure is defined as a
mapping f : A — B which satisfies for every relational symbol

R € o the following:

(x1,...,xk) ERY = (f(x),...,f(x)) € RE.

The class (category) of all o-structures is denoted by Rel(o).



First-Order Logic

@ atomic formulas, Boolean formulas, existential first-order
formulas, first-order formulas.



First-Order Logic

@ atomic formulas, Boolean formulas, existential first-order
formulas, first-order formulas.

e The quantifier count qcount(¢) of ¢ is the total number of
quantifiers in ¢.

e The quantifier rank qrank(¢) of ¢ is the maximum nesting of
quantifiers of its sub-formulas.



First-Order Logic

@ atomic formulas, Boolean formulas, existential first-order
formulas, first-order formulas.

e The quantifier count qcount(¢) of ¢ is the total number of
quantifiers in ¢.

e The quantifier rank qrank(¢) of ¢ is the maximum nesting of
quantifiers of its sub-formulas.

For a formula ¢(x1, ..., xn) with free variables xi, ..., xp,

A= ¢(ar,...,an) <= ¢istruein A when x; < a;.
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from A to B.
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Ehrenfeucht-Fraissé games

Ehrenfeucht-Fraissé game 0,(G, H): players Spoiler and
Duplicator, played as follows:

@ Start with Ag = By = ) and let my be the empty mapping
from A to B.
@ For each 1 </ < n, Spoiler picks either a vertex ain G or a
vertex b in H.
o In the first case, the Duplicator chooses a vertex b in H;
@ in the second case he chooses a vertex a in G.
o Let Aj = Aj_1U{a} and B; = B;_1 U {b};
o If no isomorphism 7; : G[A;] — G[B|] extending 7;_; exists
such that 7(a) = b then Spoiler wins the game.
o Otherwise, the game continues until i = n. If i reaches n and
7o is an isomorphism from G[A,] to H[B,] then Duplicator
wins the game.



Back and Forth Equivalence

If Duplicator has a winning strategy for n then G and H are n-back
and forth equivalent and we note G =" H.



Back and Forth Equivalence

If Duplicator has a winning strategy for n then G and H are n-back
and forth equivalent and we note G =" H.

Theorem (Fraissé, Ehrenfeucht)

Two graphs (and more generally two structures) are n-back and
forth equivalent if and only if they satisfy the same first order
sentences of quantifier rank n.




Interpretation (Model Theory)

Let £ and £’ be two languages and let T be a theory in £. An
interpretation | of L in L is defined by:

@ an integer n,

@ an L-formula U[v1,..., vs] with n free variables,

e an L-formula E[wy,w3] with 2n free variables (w1, wy
represent each a sequence of n variables),

e and an L-formula Fg[wy, ..., wg] with kn free variables for
each relational symbol R with arity &,



Interpretation (Model Theory)

Let £ and £’ be two languages and let T be a theory in £. An
interpretation | of L in L is defined by:

@ an integer n,
@ an L-formula U[v1,..., vs] with n free variables,

e an L-formula E[wy,w3] with 2n free variables (w1, wy
represent each a sequence of n variables),

e and an L-formula Fg[wy, ..., wg] with kn free variables for
each relational symbol R with arity &,

which satisfy the following conditions:
© the theory T entails that E is an equivalence relation;
@ the theory T entails that U is a union of E-classes;

© for every integer k and every symbol R of arity kin £/, T
entails that Fg is interpreted by a set which is closed for the
relation E.



Interpretation (Model Theory)

If A is a model of T, we can interpret in A the L'-structure A’
defined as follows:
o the universe A’ of A’ is U[A]/E[A];
o let R be a symbol of arity k of £’ and (ay,...,ax) € A’; then
(a1,...,ak) € R if and only if there exists
by € a1,..., b, € a such that A FR[bl,...,bk].
In such a case, A’ is an interpretation of A by I, what we denote by
A" =I(A).



Interpretation (Model Theory)

Lemma
For every formula Fv1,. .., vi] of L there exists a formula
I(f)[w1, ..., wk| of L with kn free variables (each w; represents a
succession of n free variables) such that for every model A of T, if
A’ = I(A) and if (a1,...,ax) € A’X then the three following
conditions are equivalent:

(1) A= F[al,.. .,ak];

O there exisEEl € Bilyene , by € ay such that

AFE /(l‘:)[bl7 ey bk],'
© forall by € ay,..., by € ay it holds A I(F)[by, ..., byl




Preservation theorems

Theorem (tos-Tarski theorem)

a first-order formula is preserved under extensions on all structures
if, and only if, it is logically equivalent to an existential formula.




Preservation theorems

Theorem (tos-Tarski theorem)

a first-order formula is preserved under extensions on all structures
if, and only if, it is logically equivalent to an existential formula.

Theorem (Lyndon's theorem)

a first-order formula is preserved under surjective homomorphisms
on all structures if, and only if, it is logically equivalent to a
positive formula.

A\




Preservation theorems

Theorem (tos-Tarski theorem)

a first-order formula is preserved under extensions on all structures
if, and only if, it is logically equivalent to an existential formula.

Theorem (Lyndon's theorem)

a first-order formula is preserved under surjective homomorphisms
on all structures if, and only if, it is logically equivalent to a
positive formula.

A\

Theorem (Homomorphism Preservation Theorem)

a first-order formula is preserved under homomorphisms on all
structures if, and only if, it is logically equivalent to an existential
positive formula.




Preservation theorems

t os-Tarski theorem

False in the finite.

Theorem (Lyndon’s theorem)

a first-order formula is preserved under surjective homomorphisms
on all structures if, and only if, it is logically equivalent to a
positive formula.

Theorem (Homomorphism Preservation Theorem)

a first-order formula is preserved under homomorphisms on all
structures if, and only if, it is logically equivalent to an existential
positive formula.




Preservation theorems

t os-Tarski theorem
False in the finite.

Lyndon’s theorem

False in the finite.

Theorem (Homomorphism Preservation Theorem)

a first-order formula is preserved under homomorphisms on all
structures if, and only if, it is logically equivalent to an existential
positive formula.




Preservation theorems

t os-Tarski theorem
False in the finite.

Lyndon’s theorem

False in the finite.

Rossman, 2006

a first-order formula is preserved under homomorphisms on finite
structures if, and only if, it is logically equivalent on the finite to an
existential positive formula.
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Shallow minors

© Shallow minors



Shallow minors V and V Stability Immersions

Shallow minors

Depth r minor

Vi,..., V, disjoint subsets of V/(G) such that each G[V}] is
connected and has radius at most r.

V(H) = {w1,....vp}, E(H) = {{vi, v} : w(Vi, V}) #0}.




Shallow minors V and V Stability Immersions

Shallow minors

Depth r — 1/2 minor

Vi,...,V, disjoint subsets of V(G) such that v; € V;, each G[Vj]
is connected and dist(v;,v) < r (Vv € V}).

V(H) ={v1,..., v} and E(H) = {{vi,vj} s.t. 3{x;,x;} € E(G)
with x; € Vi, x; € V}, dist(vi, x;) + dist(x;, vj) < 2r — 1.

not considered

‘////7 7)(*“**———%,,,\\

considered
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Shallow minors

1
G e GVOQGVEQGV1§~-§GV2§...GVOO
Let a, b be half-integers and let ¢ be the half-integer defined by
(2c+1)=(a+1)(2b+1).
Then for every graph G:

GV (([a]+1)b) C(GVa)VbC GVc

GvgC((..(CV1)V1)...)ViCGY <3q2_1>.

-~

q times
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Shallow topological minors

. subgraph @

_—

%ﬁort path contracton@
-
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Shallow topological minors

Gv0o C GVvl/2 C ... GvaC ...CGV
I Ul Ul Ul
G € GV0 C GV1/2C ... GVa

IN
N
)
<
8

V -arithmetic
Let a, b, ¢ be such that (2c + 1) = (2a+1)(2b+ 1).

(GVa)Vb=GVc

(. (GT1)¥1)..)F1=G¥ (35,2_1)'

g times
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Grad and top-grad

@ Grad and top-grad



V and V

grad and top-grad

The greatest reduced average density (grad) with rank r of a graph
G is defined by

1A }
VA(G) = max{ cHe GVr
(G) H
The top-grad with rank r of G is defined by

S [H]] }
V(G —max{ HeGVr
(G) H



V and V

grad and top-grad

Vo(G) < Vipa(6) < ... < Va(G) = V(6)
I A A
mel = Vo(6) < Vipa(6) < ... < Va(6) = V(6)
MO < v(6)= 0(6)Viogh(6)  (u=V)
he(G) ~ 1 v
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Theorem (Dvorak, 2007)

Let r,d > 1 be integers and let p = 4(4d)\" 1 If V,(G) > p,
then G contains a subgraph F' that is a < 2r-subdivision of a
graph F with minimum degree d.

Corollary

| A

For every graph G and every integer r > 1 holds

Vi(G) < Vi(G) < 4(4V,(G))r+V?

\
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Stability by lexicographic product

@ Stability by lexicographic product



Shallow minors V and V Stability Immersions

The lexicographic product

Let G and H be graphs. The lexicographic product G e H is defined
by
V(GeH)=V(G) x V(H)

E(G e H)={{(x,y), (x',y)}:
{x,x'} € E(G) or x =x" and {y,y'} € E(H)}.
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Stability of top-grads

Theorem

Let G be a graph, let p > 2 be a positive integer and let r be a
half-integer. Then

V(G e K,) <max(2r(p—1)+1,p2)V,(G)+p—1

| \

Proof

Let V(Kp) ={a1,a,...,ap}.

Vertices (v, a;) and (v, a;) are twins in G ® K,,, v is their projection
on G.

Let H € (G @ K,) V r be such that % = V,(G ¢ K,) and let
S(H) C G e K, be the corresponding < 2r-subdivision of H in G.
Then. ..




Stability

Proof (Cont'd)

@ We may assume that no branch of S(H) contains two twin
vertices, except if the branch is a single edge path linking two
twin vertices:




Stability

Proof (Cont'd)

@ Start with H; = H and S(H1) = S(H).
V subdivision vertex v € S(H1) which twin is a principal vertex
of S(H), delete the branch of S(H;) and the corresponding
edge of H;.

At most (p — 1)|H| edges deleted = (el

[Hi]

Z%—(p—l).




Stability

Proof (Cont'd)

@ Conflict graph C of Hy: V(C) = E(H1), E(C) = set of
{e1, e} such that:
o either e; and e, are not subdivided in S(H;) and their
endpoints are equal or twins,
e or & and e, are subdivided in S(H;) and one of the subdivision
vertices of the branch corresponding to e; is a twin of one of
the subdivision vertex of the branch corresponding to e;.

—  (C) SA(C)+1 < max(p?,2(p — 1)r +1)



Stability

Proof (End)

Q Let H; be a partial graph of H; defined by a monochromatic
set of edges of Hp of size at least max(ngL"illl‘)+17p2). Let v be a
principal vertex of S(Hz). Then two edges incident to v
cannot have their other endpoints equal or twins (because of

the coloration).




Stability

Proof (End)

Q Let H; be a partial graph of H; defined by a monochromatic
set of edges of Hp of size at least max(ngL"illl‘)+17p2). Let v be a

principal vertex of S(Hz). Then two edges incident to v

cannot have their other endpoints equal or twins (because of

the coloration).

@ Let Hsz be the projection of H, on G. Because of the
coloration, no two edges of H, are projected on a same edge of
Hs and only the edges linking twin vertices may have been
removed (simultaneously to the removal of one all but one of
the twins). As the surplus twins then have degree at most
p — 1 they can be removed safely. Then V,(G) > % > ”\ZEIH
and the result follows. O

@
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© Shallow minors

@ Grad and top-grad

@ Stability by lexicographic product

@ Immersions
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Immersions

Immersions

An immersion of a graph H in a graph G is a function ¢ with
domain V(H) U E(H), such that:

e ((v) € V(G) for all v € V(H), and «(u) # «(v) for all distinct
u,v € V(H);

o for each edge e = {u, v} of H, i(e) is a path of G with ends
v(u), (v);

o for all distinct e, f € E(H), E(«(e)) N E((f)) = 0.



Immersions

Immersions

An immersion of a graph H in a graph G is a function ¢ with
domain V(H) U E(H), such that:

e ((v) € V(G) for all v € V(H), and «(u) # «(v) for all distinct
u,v € V(H);

o for each edge e = {u, v} of H, i(e) is a path of G with ends
v(u), (v);

o for all distinct e, f € E(H), E(«(e)) N E((f)) = 0.

Alternatively, a graph H is an immersion of the graph G if H can
be obtained from G by a sequence of vertex deletions, edge
deletions and edge /ift (An edge lift consists in replacing a pair of
adjacent edges {u, v} and {v, w} by a single edge {u, w}).
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Immersions

Shallow immersions

@ stretch: maximum of (||c(e)|| —1)/2;
e complexity: maximum of [{e:v € v(e)} + [{x:v =1(x)}]

@ shallow immersion of depth (p, q): immersion of stretch at
most g and complexity at most p.



Ll

Immersions

Shallow immersions

stretch: maximum of (||c(e)|| —1)/2;

complexity: maximum of [{e: v € v(e)} + [{x: v = 1(x)}].
shallow immersion of depth (p, q): immersion of stretch at
most g and complexity at most p.

immersions at depth (1, p) = topological minors at depth p,

every graph may be immersed into a very sparse graph with a
stretch of 3/2 if one does not bound the complexity of the
immersion.



Immersions

Shallow immersions

Let GV (p, q) be the class of all shallow immersions of G with
complexity p and stretch g. Then

GVqC GV (p,q) C(GeK,)Vq.
The imm-grad of rank (p, q) of G is

o H
Vpq(G) =  max HH|
HeG VY (p,9) | |



Immersions

Shallow immersions

Let GV (p, q) be the class of all shallow immersions of G with
complexity p and stretch g. Then

GVqC GV (p,q) C(GeK,)Vq.

The imm-grad of rank (p, q) of G is

o H
Vpq(G) =  max HH|
HeGV (p,q) | |

If P is a polynomial then all of V,,V, and %p(,)’, are polynomially
equivalent: ~ .
V, <V, x VP(,)J.
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Taxonomy of classes




Resolutions limsup Taxonomy

Class resolutions

@® Class resolutions



Resolutions

Class resolutions

CVa:UGVa, c%a:U(;%a, CV(a,b) = UGVab
GeC GeC GeC

e C Vv 0: monotone closure of C,
e C Vv oo:minor closure, C V co: topological closure.



Resolutions limsup Taxonomy

Class resolutions

Cva=|JGva CVa=|)GVa CV(ab)=|]GV(ab)
GeC GeC GeC

e C Vv 0: monotone closure of C,
e C Vv oo:minor closure, C V co: topological closure.

e resolution: C¥ =(CVvO0,...,CVa,...)
e topological resolution: Cv (CVvO0,...,CVa,...)

o immersion resolution: C¥ = (C ¥ (0, 1) ..,CV(a,a+1),...)

Class resolution in time

CCcCv0CCvlC...CCVvtC ...CCVx

time @




Resolutions limsup Taxonomy

Supremum limits and bounds

@ Supremum limits and bounds



limsup

Supremum limits

Let C be an infinite class of graphs, let f : C — R be a graph
invariant, and let Inj(N, C) = injective mappings from N to C.

limsupf(G) = sup limsupf(4(i))
GeC $€j(N,C) i—oo

—  limsupgee F(G) exists and € RU {—o0, +00}.



limsup

Supremum limits

Let C be an infinite class of graphs, let f : C — R be a graph
invariant, and let Inj(N, C) = injective mappings from N to C.

limsupf(G) = sup limsupf(4(i))
GeC $€j(N,C) i—oo

—  limsupgee F(G) exists and € RU {—o0, +00}.

Resolution limits:

lim limsup 7(G), lim limsup f(G)

100 GeCvi 190 Gec Vi



Resolutions limsup Taxonomy

Class taxonomy

@ Class taxonomy



Taxonomy

Classification by resolutions

Direct classification of classes by a resolution ¢ € {CV,C",C"}:

o If there exist finite a such that €, = Graph, C is somewhere
dense.

o If €, # Graph for every a, C is nowhere dense.



Resolutions limsup Taxonomy

Classification by resolutions

Direct classification of classes by a resolution ¢ € {CV,C",C"}:

o If there exist finite a such that €, = Graph, C is somewhere
dense.

o If €, # Graph for every a, C is nowhere dense.

Let G be a graph and let a be a half-integer. Then

w(GVa) <w(GVa) <2w(GV(3a+1))H

Resolutions CV,CV and CV define the same classification.




limsup

Filtration by time (of appearance)
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Resolutions limsup

Classification by logarithmic density

Theorem (Class trichotomy)

Let C be an infinite class of graphs and € € {CY,C", COV(}. Then
the limit

im log ||G||
im limsup
r0o geg, log|G]

can only take four values, namely —c0,0,1 or 2.
The class C is:

@ a bounded size class if and only if 0 or —c0,
@ a nowhere dense class if and only if € {—00,0,1},

@ a somewhere dense class if and only if 2.

Notice that C7,C"V and CY define the same trichotomy.



Resolutions limsup Taxonomy

The world

log||G])

lim, ., lim sup,, o~ o 7= o0 lozllG
o logd] lim,._mlimsupb_s‘.vliog” ||=1

Asymptotically edgeless log|G]

Bounded size |
Bounded degree

Excluded
|

Bounded genus | Excluded minor || Bounded

Almost wide.

Y

Locally Locally Locally. Nowhere
bounded _ excluded bounded - dense
Tree-width minor ‘expansion = Quasi wide

log|G
log|G]

lim, ., lim sup,,_, o, =2

Somewhere

dense @

u]
o)
I
i
it
N
e
)
p)



Resolutions

limsup

Taxonomy

Characterization of nowhere dense classes

Let C be an unbounded size infinite class of graphs, let F be a graph with at least one

edge and let g be a positive integer. Then the following conditions are equivalent:

o C is a class of nowhere dense graphs,

©

© 0 © 000 O

for every integer r, C V r is not the
class of all finite graphs,

for every integer r, C V r is not the
class of all finite graphs,
C is a uniformly quasi-wide class,
H(C) is a quasi-wide class,

A log || G|

lim limsup ——— =1,
r—> gecvr log|G|

- log || G|

lim limsup ——— =1
P Gecir log|Gl

log Vr(G)

lim limsup ——— =0,
r=oo gec  log|G|

. . log 6r(c‘-)
lim limsup ——— =0,
r—co gee  log|G|

@ . . log xp(G)
lim limsup ———= =0
P~ Gec  log |G|
- log x(G)
lim limsup ————— =0,
i—ocoGecvi log|G|

log colp (G)

@ lim limsup ———— =0,

P— Gec log |G|
. . log wcolp(G)
@ lim limsup ———— =0,
P gec log |G|

@ for every integer c, the class
CoeKe={GeK.:G¢cC}isaclass
of nowhere dense graphs,

log(#F C G)

@ lim limsup ———— < |F|,
i—wcoGecvi log |G|

@ for every polynomial P, the class C’ of
the 1-transitive fraternal augmentations
of directed graphs G with
A7 (G) < P(Vo(G)) and G € C form
a class of nowhere dense graphs.

@
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Tree-Depth and Decomposition
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Definition and basic properties of tree-depth

@ Definition and basic properties of tree-depth



Tree-depth
Definition

The tree-depth of G is the minimum height of a rooted forest F
such that G C Clos(F).

N

@ See also rank function, vertex ranking number, the minimum
height of an elimination tree



Tree-depth

Basic properties

o If G is connected with DFS-tree Y then
height(Y) > td(G) > log,(height(Y) + 1).

@ td is a minor monotone invariant.



Tree-depth Relations Finiteness LTDD Fraternal augmentation Weak coloring

Basic properties

o If G is connected with DFS-tree Y then
height(Y) > td(G) > log,(height(Y) + 1).

@ td is a minor monotone invariant.

Recursive definition

1, if |G| =1,

td(G) ={ L+ Venc/i(nG)td(G —v), if Gisconnected and |G| > 1;
_max td(G;), otherwise;
i=1,....p

(where Gy, ..., G, are the connected components of G).
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Tree-depth and paths

The tree-depth of a path of order n is td(P,) = [log,(n + 1)].



Tree-depth

Tree-depth and paths

The tree-depth of a path of order n is td(P,) = [log,(n + 1)].

C has bounded tree-depth,
<= C excludes some path P, as a subgraph (as a minor),

<= C( is degenerate and excludes some path P, as an induced
subgraph.
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Tree-depth and cycles

Let G be a biconnected graph, and let L be the length of a longest
cycle of G. Then

14 [log, L] <td(G) <1+ (L —2)°

N N YY)
N AAAL
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Scattered sets

Lemma

Let C be a hereditary class of graphs. Then the two following
properties are equivalent:

(i) 3s and N : N — N such that Vp and VG € C of order at least
N(p), 3S C V(G) with |S| < s so that G — S has at > p
connected components.

(i) C has bounded tree-depth
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Relations with other invariants

@ Relations with other invariants
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Weak coloring numbers

td(G) = weolso(G)
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Tree-width

tw(G) < pw(G) < td(G) < tw(G) log|G]|.
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Tree-width

Let 0 < o < 1 and let C be an hereditary class of graphs such that
each graph G € C of order n has tree-width at most Cn®.
Then, every graph G € C of order n has tree-depth at most

C fo"
12 -

Every graph G of order n with no minor isomorphic to K has

tree-depth at most (2 4+ v/2)V h3n.
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Centered coloring

A centered coloring of a graph G is a vertex coloring such that, for
any (induced) connected subgraph H, some color c(H) appears
exactly once in H.
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Centered coloring

A centered coloring of a graph G is a vertex coloring such that, for
any (induced) connected subgraph H, some color c(H) appears
exactly once in H.

— For every graph G, td(G) is the minimum number of colors in
a centered coloring of G. @



Tree-depth Relations Finiteness LTDD Fraternal augmentation Weak coloring

Finiteness and Consequences

€@ Finiteness and Consequences
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Colored trees

Let rc(n) be the number of c-colored unlabeled rooted trees of
order n. Then

Define F (¢, t) by inductively by:

c, if t = 1,
e, t) = Fet=1)+1 .

dic1 re(i), otherwise.

Let F be a c-colored rooted forest. If height(F) =t and
|F| > F(c,t) then F has an involutive automorphism exchanging
two branches or two rooted trees. @
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Graphs with bounded tree-depth

Any c-colored graph G of order n > F (c,td(G)) has a non-trivial
involuting color-preserving automorphism 1 : G — G which reverses
no edge.

Any asymmetric graph of tree-depth t has order at most F (1, t). \

For any c-colored graph G, 3A C V(G), |A| < F (¢, t), such that
G — G[A].
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First-order properties

In general, a graph is not n-equivalent to one of its proper
subgraph. However:

Theorem

For every integers t, n, c there exists an integer N(t, n, c) such that
every graph with tree-depth at most t with vertices colored using ¢
colors is n-equivalent to one of its induced subgraphs of order at
most N(t,n,c):

VG A C V(G), |A| < N(td(G),n, c) and G =" G[A].
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Well quasi orders

Let (Q, <) be a well quasi-ordered set and let t be an integer.
Denote by T:(Q) the class of Q-labeled graphs of tree-depth at
most t.

Define G C; H if 3f : V(G) — V(H) such that G = H[f(V(G))]
and label(f(x)) > label(x) for every x € V(G).

Lemma (Ding, 1992)
The class T:(Q) is well quasi ordered by C;.

Remark: the class of 3-colored paths does not have such a property.
O O0O—@
OO 0@
OO O 0@
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LTDD

Forbidden subgraph characterization

Obstructions for td < 3 (Dvorak)

1w

A4
M\
M\
N/
\ 7

L < <€, <&
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Let 7;(6) = c-colored graphs of tree-depth < t.
Define H C7 G if 3A: H = G[A] and G — H (color preserving).

Theorem

The class 7;(6) is well quasi ordered by C*.

| \

Proof.

Consider a subset S of Tt(c). Then S contains finitely many classes
of graphs which are homomorphically equivalent. In each class,
there are finitely many graphs which are minimal for C;. O

v
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Low tree-depth decompositions

@ Low tree-depth decompositions
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Low tree-depth decompositions

Chromatic numbers x,

Xp(G) is the minimum of colors such that any subset / of < p
colors induce a subgraph G; so that td(G;) < |/|.
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Low tree-depth decompositions

Chromatic numbers x,

Xp(G) is the minimum of colors such that any subset / of < p
colors induce a subgraph G; so that td(G;) < |/|.

° . I
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Low tree-depth decompositions

Chromatic numbers x,

Xp(G) is the minimum of colors such that any subset / of < p
colors induce a subgraph G; so that td(G;) < |/|.
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X2: coloration with no 2-colored Py's
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€D Fraternal augmentation
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Fraternal augmentation

V10 @
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Fraternal augmentation and centered coloring

Let k =2P~1 4+ 2. Let c be a coloring such that c(x) # c(y) if
there exists in G<x a directed path from x to y of length at most p.

Let P be a p-colored path in G and let Vp be the vertex set of P.
Then the length of P is at most 2P — 2, and there exists a vertex

s € P such that every other vertex v € P may be reached from s
by a directed path of G<[V(P)].
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Fraternal augmentation and centered coloring

Let L be the length of P. Define inductively P; in égk[V(P)] of
length L; = L+ 1 — i such that

@ every vertex of V(P) \4.5,- can be reached from a vertex of P;
by a directed path of G<,[V(P)];

o for every adjacent vertices u, v of P; there exists in égk[V(P)]
a directed path of length [log,(w(u, v))] starting from v
which intersects P; only at v.
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Fraternal augmentation and centered coloring

1 1 1 o O 1
1 o
1 P 5 | B
1
o 1 1 o 1 1
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Low tree-depth decomposition

Theorem

Let G be a directed graph. Define Ay = 0,B; = A~(G) and
inductively:

i—1 i—1
1
A= E AJ'B,',J' + 5 E B','B,',J'
j=2 j=1

B; = max((i — 1)A; + 1, (A; + 1)?)V(;_1)/2(G) + A;

Then, Vp > 2, xp(G) <1+ 22?;”“2 B;. Hence xp(G) is
bounded by a polynomial Py(Vop-—2,1/2(G)), where P, has degree
about 2%° .
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The weak coloring approach

@ The weak coloring approach
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The weak coloring approach

Theorem (Zhu, 2008)
Let G be a graph, let k € N and let p = (k —1)/2.
o Vp(G)+1 < wcol(G),
o [fV,(G) < m then coly(G) <1+ gk, where qy is defined as
g1 =2m and fori > 1, gi;1 = qlql-ziz.

As coly(G) < weoly(G) < colg(G)* (Kierstead, 2003) we have
Vp < colg < wceoly.

Theorem (Zhu, 2008)

If G is a graph with wcolyp—2(G) < m, then G has a p-centered
coloring using at most m colors.

A
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Scattered sets

Definition

@ A subset X of V(G) is r-independent if distg(x,y) > r for
every x,#% y € X.

e The r-independence number of G is the maximum size a,(G)
of an r-independent set of G.
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Scattered sets

Definition

@ A subset X of V(G) is r-independent if distg(x,y) > r for
every x,#% y € X.

e The r-independence number of G is the maximum size a,(G)
of an r-independent set of G.

— If A(C) < oo then Vd it holds:

b inf _
im in ag(G) = o0

— If td(C) < oo then there exists s € N such that:

liminf max aso(G — S) = 0
GeC |S|<s
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The function ®.

®c(d) = min{s: ||m mf gﬁx ag(G — S) = oo}
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Wideness of a class

Definition (Dawar)

A class C is
e wide if Vd, ®¢(d) =0,
@ almost wide if supy ®¢(d) < oo,
e quasi wide if Vd, ®¢(d) < oco.

This is not a hereditary notion. |

@



Wideness d-independent sets Characterizations

Applications
Uniform version: the function ®,

Let a,(G|A) be the maximum size of an r-independent set of G
included in A.

®c(d) = min{s: I;\Irrygof inf

— 5]A) = o).
. max ag(G — 5|A) oo}
Ac(“i)

&

2a¢

HPT



Wideness d-independent sets Characterizations Applications HPT

Wideness of a class

Definition (Dawar)

A class C is
o uniformly wide if Vd, ®¢(d) =0,
e uniformly almost wide if supy ®c(d) < oo,
e uniformly quasi wide if Vd, ®¢(d) < .

Invariant by monotone closure: ®¢ = ®¢ g 0. I

@
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Wide classes

Let C be a hereditary class of graphs. Then the following are
equivalent:

° d¢(2) =0,
° ®¢(2) =0,
e A(C) < o0,

o C is wide,

e C is uniformly wide.
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Finding d-independent sets

@ Finding d-independent sets
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Finding 1-independent sets

This is Ramsey theorem!

Let ¢, n be integers.
Every graph of order at least R(c, n) contains

@ either a clique of size c,

@ or an independent set of size n.

y

Corollary

Let C be a hereditary class.
e Either w(C) = oo and ®¢(1) = d¢(1) = oo,
e or w(C) < co and ®¢(1) = dc(1) = 0.
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Finding 2-independent sets

("gl) times

—
Let R*(p,q,n) = R(q,q,...,4,p).

Lemma
Let G = (AU B, E) be a bipartite graph.

If|Al > R*(p, q,n) then at least one of the following holds:
@ A includes a 2-independent set of size p;

@ A includes the principal vertices of a K, (1);

o B includes a vertex of degree > n.




Wideness d-independent sets Characterizations Applications HPT

Proof




Wideness d-independent sets Characterizations Applications HPT

Proof




Wideness d-independent sets Characterizations Applications HPT

Proof




Wideness d-independent sets Characterizations Applications HPT

Proof




Wideness d-independent sets Characterizations Applications HPT

Proof




Wideness d-independent sets Charac terizations Applications

A first consequence

(e 2r(e(ent)

Does not generalize: w(G; V1) =2 but w(G; V1) — o

HPT
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Finding 2-independent sets

R*(m, a, b), if s=0;
Let ©(m,a,b,s) = .
R*(m,a,©(m,a,b,s — 1)), otherwise.

Lemma
Let G = (AU B, E) be a bipartite graph.

If |[A| > ©(m, a, b, s) then at least one of the following holds:

@ A includes the principal vertices of a K,-Sl);

e JA' C A, B’ C B s.t; every vertex in A’ is adjacent to every
vertex in B' and
o either |B'| =s+ 1 and |A’| = b,
o or |B'| <s,|A'| =m and A’ is 2-independent in G — B'.




d-independent sets

haracterizations

ications

HPT
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Finding 2-independent sets

Lemma

Let C be a hereditary class.
o Either w(CV %) =00 and

¢c(2) = 00,
o orw(CV 1)< ooand

®c(2) =max{s:VneN, K, €C}.
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A (2r + 1)-independent set in a 2r-independent set

Lemma

Let A be a 2r-independent subset of G of size at least R(c, n).
Then either K. € GV r or A includes a (2r + 1)-independent set of
size n.

Proof.

Let H € G V r obtained by contracting the r-neighborhoods of
vertices in A into A’. Either H contains a K. or A’ includes an
independent set of size n of H, which corresponds to a

(2r + 1)-independent set of G included in A. O

| A\




A (2r + 1)-independent set in a 2r-independent set

DA
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A (2r + 2)-independent set in a 2r 4 1-independent set

Lemma

Let A be a (2r + 1)-independent set of G of size at least
©(m, a, b,s). Then at least one of the following holds:

o K, € GV (r+1/2) (with centers in A);
o JA'C A B' C B such that B' C (] Npy1(x) and
xeA
o either |B'| =s+1 and |A’| = b,
o or |B'| <s,|A| = mand A’ is (2r + 2)-independent in G — B’.

v




Wideness

d-independent sets Characterizations

Applications

A (2r + 2)-independent set in a 2r 4 1-independent set

HPT
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Characterizations

@ Characterizations
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Quasi wideness

Theorem

Let C be a hereditary class of graphs. The following are equivalent:
o C is quasi-wide;
e C is uniformly quasi-wide;
e for every integer d, w(C V d) < oo;
e for every integer d, w(C V d) < oo;

e C is a class of nowhere dense graphs.

extends the following:

Theorem (Dawar, Grohe, and Kreutzer, 2007)

If a class excludes locally a graph minor then it is quasi wide.
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Almost wideness

Theorem

Let C be a hereditary class of graphs. The following are equivalent:
o C is almost wide;
o C is uniformly almost wide;

© There are s € N and t : N — N such that K, y(,y ¢ CV r (for
allr e N).

extends the following:

Theorem (Atserias, Dawar, and Kolaitis, 2006)

If a class excludes a graph minor then it is almost wide.




Applications

€D Wideness of a class
€ Finding d-independent sets

€D Characterizations
@ Applications

€@ Homomorphism preservation theorems
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Forbidding induced paths

Theorem

There exists a function F : N> — N such that for every integers
k,c and every graph G of order at least F(k,c) one of the
following condition holds:

o either G includes Py, has an induced subgraph,
e or G includes K. as a minor at depth (k —1)/2,

@ or G has a non trivial involutive automorphism.

v

F(k,c) is really huge!!! q
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Assume Py 1 Z; G and K. ¢ GV (k—1)/2. Then
o AsKc.¢ GV (k—1)/2,3ds=s(k—1,c), AN =N(k—1,¢)
such that if AC G and |[A| > N
then 35,|S| < s and a,_1(G — S|A) > s+ 2;

e By contradiction, there exists no Py C G hence td(G) < N;

@ Thus if |G| > X(N) then G has a non-trivial involutive
automorphism.
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Powers of acyclic orientations

Let L be a linear order on V(G) and let Transy(G) be the directed
graph with (x,y) € E if x <; y and 3 an L-increasing xy-path P of
length at most k.

Theorem
For every k,n € N there exists N(k, n) such that for every graph G

mLaxw(Transk(G)) > N(k,n) = w(GV g) >n

w(GV g) >n = mfxw(Transk(G)) >n

4
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Proof

o Let w=w(G V%) 3s =s(k,w) s.t. VA C V(G) with
|A| > C(k,w) 3S C V(G) : |S| < s and ax(G — S|A) > 25+,
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@ Assume for contradiction that max; w(Trans,(G)) > C(k,w).
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are < x or > x hence form a clique in Trans,(G — x).



Applications

Proof

o Let w=w(G V%) 3s =s(k,w) s.t. VA C V(G) with
|A| > C(k,w) 3S C V(G) : |S| < s and ax(G — S|A) > 25+,
@ Assume for contradiction that max; w(Trans,(G)) > C(k,w).

o Let A form a clique of size C(k,w) in Trans,(G).
FS JA' C A, |S| <s,|A'| =25 and A’ k-independent in
G-S.

o Let K be a clique of Trans(G); Vx, > WT_l vertices of K
are < x or > x hence form a clique in Trans,(G — x).

e By induction, as A’ forms a clique in Trans,(G) and
|A'| > 251, a4’ € A’ in Transk(G — S) which are adjacent.
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€@ Homomorphism preservation theorems
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Homomorphism preservation theorems

Theorem (Rossman, 2006)

Let ¢ be a first order formula.
Assume that for every finite A, B it holds

AFpandA—-B — BFo.

Then ¢ is equivalent (in the finite) to an existential positive first
order formula.
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Homomorphism preservation theorems

Theorem (Rossman, 2006)

Let ¢ be a first order formula.
Assume that for every finite A, B it holds

AFpandA—-B — BFo.

Then ¢ is equivalent (in the finite) to an existential positive first
order formula.

Theorem

| A\

If the homomorphism preservation theorem holds for a hereditary
class of graphs C, it also holds for the class Sub,(C) of all
p-subdivisions of the graphs in C.
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Proof by functorial interpretation

Assume VG, H € Sub,(C), (GF® AN G—>H)=HEF®.

e By natural interpretation / : C — Sub,(C), 3V = [(®) such
that VG eC, GP E® «— GEV;
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0 (GEVW AG = H)= (GP) Ed AGP — HP)
= HP Ed= HEW.
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Assume VG, H € Sub,(C), (GF® AN G—>H)=HEF®.

e By natural interpretation / : C — Sub,(C), 3V = [(®) such
that VG eC, GP E® «— GEV;

0 (GEVW AG = H)= (GP) Ed AGP — HP)
= HP Ed = HE V.

@ hence IFCC: VGelC, (IFeEF, F—-G) < GEV,

e in particular, VF € F, F E W hence F(P) £ &; So, VG € C:
o (IFeF,FP — GP) = G0 E o,
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Proof by functorial interpretation

Assume VG, H € Sub,(C), (GF® AN G—>H)=HEF®.
e By natural interpretation / : C — Sub,(C), 3V = [(®) such
that VG eC, GPE® «— GFV;
0 (GEVW AG = H)= (GP) Ed AGP — HP)
= HP Ed= HEW.
@ hence IFCC: VGelC, (IFeEF, F—-G) < GEV,
e in particular, VF € F, F E W hence F(P) £ &; So, VG € C:
o (AF € F,FP) - G = G = o;

o GPEG=GEV=(IFcFF—G)
= (3F € F,FPP) — G) O
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Homomorphism preservation theorems

Theorem (Dawar, 2010)

Let ¢ be a first order formula and let C be a hereditary addable
quasi wide class.
Assume that for every A,B € C it holds

AFpandA—-B — BFo.

Then ¢ is equivalent (in C) to an existential positive first order
formula.
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Homomorphism preservation theorems

Theorem (Dawar, 2010)

Let ¢ be a first order formula and let C be a hereditary addable
quasi wide class.
Assume that for every A,B € C it holds

AFpandA—-B — BFo.

Then ¢ is equivalent (in C) to an existential positive first order
formula.

The homomorphism preservation theorem holds for any hereditary
addable nowhere dense class of graphs.
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Homomorphism preservation theorems

Corollary

For any monotone addable class of graphs C there exists an integer
p such that the homomorphism preservation theorem holds for

Suby(Graph) NC,
that is: to the subclass of p-subdivided graphs of C.

o if C is somewhere dense,
dp : Suby(Graph) N C = Suby(Graph);

e if C is nowhere dense, true for any p.
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Homomorphisms and CSP

Homomorphisms
A homomorphism G — H is a mapping f : V(G) — V/(H)
satisfying {x,y} € E(G) = {f(x),f(y)} € E(H).

“edge preserving mappings”
(not only graphs; finite relational systems)



Homomorphisms and CSP

Homomorphisms

A homomorphism G — H is a mapping f : V(G) — V/(H)
satisfying {x,y} € E(G) = {f(x),f(y)} € E(H).

“edge preserving mappings”
(not only graphs; finite relational systems)

- ——e—

f:G—H = H-coloring

G—>K3 = A

3-coloring
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Complexity

Theorem (Hell, Nesetfil, 1990)

H-coloring is hard <= H is non bipartite

Other proofs:

e Bulatov (graph theory and algebra)
e Siggers (combinatrics)
e Barto—Kozik (universal algebra)

)

@ Kun-Szegedy (dynamical systems, PCP
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Complexity

Theorem (Hell, Nesetfil, 1990)

H-coloring is hard <= H is non bipartite

Other proofs:

e Bulatov (graph theory and algebra)
e Siggers (combinatrics) All hard
e Barto—Kozik (universal algebra)
@ Kun-Szegedy (dynamical systems, PCP)
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Constraint Satisfaction Problems (CSP)

Problem: Assign values to variables so that all constraints are
satisfied.

o SAT

e 3-COL
e (x,y) €{(1,1),(2,3)} and (x,z,w) €
((2,2,1),(1,3,2),(2,2,2)} ...
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Constraint Satisfaction Problems (CSP)

Problem: Assign values to variables so that all constraints are
satisfied.

Examples
o SAT
e 3-COL
o (x,y)€{(1,1),(2,3)} and (x,z,w) €
{(2,2,1),(1,3,2),(2,2,2)} ...

Theorem (Feder, Vardi)

Each constraint satisfaction problem is polynomially equivalent to
— H for some digraph H.
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[ NP-complete \
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Dichotomy Conjecture

Problems in NP Problems in CSP

NP-complete NP-complete

7 L
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@ Finite dualities




Finite dualities

Critical graphs and duality

A graph G is H-critical if

G+~ H

but G — H for every G' C G

When are there finitely many H-critical graphs?

= do there exists F1, ..., F; such that for every G
F1 e G
F2 e G
= G—H

Ft—"‘>G
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Finite dualities

Forb(F) = CSP(D)
(F - G forall F € F)

—

D

&

Q>
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Finite dualities

Gallai, Hasse, Roy, Vitaver:

+>G<:>G—>D

Komarek:

fre = o)

F -~~~ ¢ <= G — D

General:
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Characterization of finite dualities

o Combinatorics

Komarek
o (F a set of trees) N. Tardif
o (D? dismantable on the diagonal) Larose, Lotten, Tardif
@ Logic
o (only FO definable CSP) Q:,S;”aas
man

@ Homomorphism poset
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Characterization of finite dualities

o Combinatorics

Komarek
o (F a set of trees) N. Tardif
o (D? dismantable on the diagonal) Larose, Lotten, Tardif
@ Logic
o (only FO definable CSP) Atserias
Rossman
@ Homomorphism poset
e Gaps, Cuts and Bounds (Heyting algebra)
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Restricted dualities

C-restricted duality

Forb(F)NC =CSP(D)NC and D € Forb(F)

vVGeC: (VFeF, F-/4~G) < (G— D)
VFeF: F—~D.
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Restricted dualities

C-restricted duality

Forb(F)NC =CSP(D)NC and D € Forb(F)
vVGeC: (VFeF, F-/4~G) < (G— D)
VFeF: F—isD.

Example: V planar G,




Restricted duality

o 5 = = E 9DAC¢



Restricted dualities

All Restricted Dualities

C has All Restricted Dualities (ARD)
iff

for every finite set F C C (of connected structures) there exists
Dz € Forb(F) such that

C N Forb(F) = C N CSP(Dx)



Restricted dualities

All Restricted Dualities

C has All Restricted Dualities (ARD)
iff

for every finite set F C C (of connected structures) there exists
Dz € Forb(F) such that

C N Forb(F) = C N CSP(Dx)

@ Bounded degree graphs have all restricted dualities (ARD)
(Héggkvist, Hell)

@ Planar graphs have ARD
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Characterization by metric properties

dist, (A,B) =27k
k=min{|C|]: (C—>A ANC—»B)or(C»A N C—B)}

- ——e—

For e > 0 let ¢°(A) = min{|B|: A — B and dist;(A,B) < ¢}.
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Characterization by metric properties

dist, (A,B) =27k
k=min{|C|]: (C—>A ANC—»B)or(C»A N C—B)}

- ——e—

For e > 0 let ¢°(A) = min{|B|: A — B and dist;(A,B) < ¢}.

For a class C the following conditions are equivalent:
@ C has all restricted dualities,

Q for every € > 0, sup ¢¢(A) < 0.

AcC
&




Restricted dualities

Proof —>

@ Assume C has ARD, let € > 0 and t > —log, €.

Fi(A) = {T connected core : |T| <tand T » A},
D-|- = dual of T € F¢(A) wrt C,

- IJ o

TeF:(A)

o VT € F;(A), T -» A hence A — Dt. Thus A — A’.



Restricted dualities

Proof —>

@ Assume C has ARD, let € > 0 and t > —log, €.

Fi(A) = {T connected core : |T| <tand T » A},
D-|- = dual of T € F¢(A) wrt C,

= I or

TE]‘—t A)

o VT € F;(A), T -» A hence A — Dt. Thus A — A’.
o Let T’ be connected, |T'| < t.

T A=T = A
T » A= Core(T') € Ft(A) = A" = D = T » A’

Thus dist; (A, A’) < e and |¢°(A)] < |A'| < C..

@



Restricted dualities

Proof «——

@ Assume sup |[p(A)| < oo for every € > 0.
AeC
Let F be connected, t > |F|,e =27¢,

D={¢(A): AcC N F»A} (finite)
Di(F) =[] x.
XeD
o F—» D(F)

(for otherwise 3¢°(B) e D: F — ¢°(B) AF » B,
contradicts dist, (¢<(B), B) < 2~ IFI).



Restricted dualities

Proof «——

@ Assume sup |[p(A)| < oo for every € > 0.
AeC
Let F be connected, t > |F|,e =27¢,

D={¢(A): AcC N F»A} (finite)
=[] x
XeD
o F - Dy(F)

(for otherwise 3¢°(B) e D: F — ¢°(B) AF » B,
contradicts dist, (¢<(B), B) < 2~ IFI).
o F— A= A —» D(F) (for otherwise F — D.(F))



Restricted dualities

Proof «——

@ Assume sup |[p(A)| < oo for every € > 0.
AeC
Let F be connected, t > |F|,e =27¢,

D={¢(A): AcC N F»A} (finite)
=[] x
XeD
o F - Dy(F)

(for otherwise 3¢°(B) e D: F — ¢°(B) AF » B,
contradicts dist, (¢<(B), B) < 2~ IFI).
o F— A= A —» D(F) (for otherwise F — D.(F))
o F» A= ¢(A) e D= A — D(F).
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Bounded expansion classes

Definition

A class C of graphs has bounded expansion if

. G
Vie N, sup u<oo.
Gecvi |G|
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Bounded expansion classes

Definition

A class C of graphs has bounded expansion if

. G
Vie N, sup u<oo.
Gecvi |G

Equivalent statements

. G
Vi,  sup Iel < o0 Vp, sup xp(G) < o0
GeCvVi |G| GeC
Vi,  sup x(G) < o0 Vi,  sup x(G) < oo
GeCvi GECV i
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Bounded expansion classes

Definition

A class C of relational structures has bounded expansion if the class
Gaifman(C) has bounded expansion.
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Bounded expansion classes

Definition

A class C of relational structures has bounded expansion if the class
Gaifman(C) has bounded expansion.

A class C of relational structures has bounded expansion if and only
if the class Incid(C) has bounded expansion.
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Bounded expansion classes

Let p be the maximum arity of a symbol.

Incid(C) C (Gaifman(C) e K3) v 0,
Gaifman(C) € (Incid(C) » K)) 7 5.

Thus

Gaifman(C) has BE = (Gaifman(C) e K,) vV 0 has BE
— Incid(C) has BE
Incid(C) has BE = (Incid(C) e K(p)) v % has BE
2
= Gaifman(C) has BE
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Approximation of a structure

Construction

Let p € N. Let v be a xp-coloring of Gaifman(A) with N colors.
For I € (M), let A = Core(A[y2(1)]).

Define F,(A):
@ base set Wj U --- U Wy where

WC_{C:IE(I;/> with c el — A}

o relations {(C1,...,¢r) € We, X -+ x W, } such that

(G(1),...,¢ (1) relation of Ay VI D {c1,...,cr}
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Approximation of a structure

o A— Fy(A),
o VT, |T|<p: (T—=A) < (T = Fy(A)),

@ There exists C, depending only on p and the signature of A
N
such that |Fp(A)| < N C,E”’l), where N = y,(Gaifman(A)).
Hence |¢? "(A)| < f(p, xp(Gaifman(A))).

Remark

| A

Actually Fp is the the right-adjoint of the functor A — (A’)Ie([N])'
P

4
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Bounded expansion classes and restricted dualities

Bounded expansion classes have all restricted dualities. \

Precise version

Let p € N. If xp(Gaifman(C)) < oo then every connected F € C
has a restricted dual (wrt C).
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Bounded expansion classes and restricted dualities

Bounded expansion classes have all restricted dualities.

Precise version

Let p € N. If xp(Gaifman(C)) < oo then every connected F € C
has a restricted dual (wrt C).

Problem
Are there other classes which have all restricted dualities?

@
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Classes of structures

Subdivisions

€ Classes of structures




Structures

Reorientation of structures

Let A be a structure. A structure A’ with the same base set is a
reorientation of A if

(xt,--,x) €ER® = 30 €6, (xo(1)s--- Xo(r)) € R
(Xl,...,Xr)E RA = doeG,: (Xa(1)7--'7XU(r))€RB

Circuits of A = circuits of Incid(A).
- e —

All possible reorientations: C  +——  Corient



Structures

Acyclic structures

Let A be a structure and let < be a linear order on its base set.
A_ is the structure with base set A where

(X1,...,x) € RA<

X< <x A 30EG,t (Xp(1)- - Xo(r) € R

All possible linear orderings = all possible acyclic reorientations

cC + Cacyc
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Classes with all restricted dualities

Let C be a class of structures. The following are equivalent:
O C has bounded expansion,
Q Corient has all restricted dualities,

© for every integer p, there exists a structure D, without a
circuit of length at most p such that

VA € Cacyes A — D,.
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Proof

e (1) = (2) already proved; (2) = (3) is straightforward.



Structures

Proof

(1) = (2) already proved; (2) = (3) is straightforward.

]
@ (3) = (1) by contradiction.
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(3) = (1) by contradiction.
—(1) = Incid(C) does not have bounded expansion



Structures

Proof

(1) = (2) already proved; (2) = (3) is straightforward.
(3) = (1) by contradiction.

—(1) = Incid(C) does not have bounded expansion

= 3p: x(Incid(C) V p) = cc.



Structures

Proof

(

1) = (2) already proved; (2) = (3) is straightforward.
(3) =

=
=

(1) by contradiction.

Incid(C) does not have bounded expansion
3p : x(Incid(C) V p) = oo.

=(1)

o JH,S,A: x(H) > |Dpi1|, 6(H) > maximum arity, S is a
< p-subdivision of H and S C Incid(A) € Incid(C);



Structures

Proof

e (1) = (2) already proved; (2) = (3) is straightforward.
@ (3) = (1) by contradiction.
=
=

Incid(C) does not have bounded expansion
3p : x(Incid(C) V p) = oo.

=(1)

o JH,S,A: x(H) > |Dpi1|, 6(H) > maximum arity, S is a
< p-subdivision of H and S C Incid(A) € Incid(C);
o the branching vertices of S correspond to points of A;



Structures

Proof

(1) = (2) already proved; (2) = (3) is straightforward.
(3) = (1) by contradiction.

—(1) = Incid(C) does not have bounded expansion

= 3p: x(Incid(C) V p) = cc.

o JH,S,A: x(H) > |Dpi1|, 6(H) > maximum arity, S is a
< p-subdivision of H and S C Incid(A) € Incid(C);

o the branching vertices of S correspond to points of A;

e consider < such that every branch of S is monotone;



Structures

Proof

(1) = (2) already proved; (2) = (3) is straightforward.
(3) = (1) by contradiction.

—(1) = Incid(C) does not have bounded expansion

= 3p: x(Incid(C) V p) = cc.

o JH,S,A: x(H) > |Dpi1|, 6(H) > maximum arity, S is a
< p-subdivision of H and S C Incid(A) € Incid(C);

o the branching vertices of S correspond to points of A;

e consider < such that every branch of S is monotone;

o (3)=3f:A. - Dpyy;



Structures

Proof

e (1) = (2) already proved; (2) = (3) is straightforward.
@ (3) = (1) by contradiction.
—(1) = Incid(C) does not have bounded expansion
= 3p: x(Incid(C) V p) = cc.

o JH,S,A: x(H) > |Dpi1|, 6(H) > maximum arity, S is a
< p-subdivision of H and S C Incid(A) € Incid(C);

the branching vertices of S correspond to points of A;
consider < such that every branch of S is monotone;

(3) = 3f :Ac - D,y

two endpoints of a branch of S have distinct images by f;



Structures

Proof

e (1) = (2) already proved; (2) = (3) is straightforward.
@ (3) = (1) by contradiction.
—(1) = Incid(C) does not have bounded expansion

= 3p: x(Incid(C) V p) = cc.

o JH,S,A: x(H) > |Dpi1|, 6(H) > maximum arity, S is a
< p-subdivision of H and S C Incid(A) € Incid(C);

the branching vertices of S correspond to points of A;
consider < such that every branch of S is monotone;

(3) = 3f :Ac - D,y

two endpoints of a branch of S have distinct images by f;
= X(H) < |Dpal.
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Classes of graphs closed by subdivisions

€ Classes of graphs closed by subdivisions
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Classes of graphs closed by subdivisions

Let C be a class of undirected graphs closed by subdivisions. The
following are equivalent:

@ the class C has bounded expansion;
@ the class C has all restricted dualities;

© for every odd integer g there exists a non-bipartite graph H,
with odd-girth at least g such that

VG e, 0g(G) >g = G — Hg




First order definable H-colorings

/’////
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First order definable H-colorings

H-coloring is first-order definable on C if there exists a first-order
formula @ such that

VG el (GE®) «— (G — H).

FOG Conjecture
Let C be a hereditary addable class of graphs closed by
subdivisions. The following are equivalent:
@ there exists in C first-order definable H-colorings for non
bipartite H of arbitrarily large odd-girth;

@ the class C has bounded expansion.




Ways to the conjecture

© Erdés-Hajnal conjecture = FOG-conjecture;

© Thomassen conjecture = FOG-conjecture.

Proof.

Only one direction. Two steps:

@ C is not somewhere dense:

If CV p = Graph, H is non-bipartite and og(H) > 2p + 1, then
H-coloring is not first-order definable in C.

@ C has bounded expansion.




Proof of first step

Assume 3¢ : VG €C, (GE®) < (G — H).

@ —® preserved by homomorphisms on Suby,(Graph)
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3F, VFEFF»G? — @) 4H
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Assume 3¢ : VG €C, (GE®) < (G — H).

@ —® preserved by homomorphisms on Suby,(Graph)

@ homomorphism preservation theorem =
AF, VYFEFF»G® = B H.

@ graphs in F are non-bipartite;
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Assume 3¢ : VG €C, (GE®) < (G — H).

@ —® preserved by homomorphisms on Suby,(Graph)

@ homomorphism preservation theorem =
AF, VYFEFF»G® = B H.

@ graphs in F are non-bipartite;
@ choose G, x(G) > |H| and og(G) > maxrecr og(F).



Proof of first step

Assume 3¢ : VG €C, (GE®) < (G — H).
@ —® preserved by homomorphisms on Suby,(Graph)
@ homomorphism preservation theorem =

3F, VFEFF»G? — @) 4H

@ graphs in F are non-bipartite;
@ choose G, x(G) > |H| and og(G) > maxrecr og(F).
o VFEF, F» G2 = G .



Proof of first step

Assume 3¢ : VG €C, (GE®) < (G — H).

e 6 o6 o

—® preserved by homomorphisms on Suby,(Graph)

homomorphism preservation theorem =
3F, VFeFF-»G» — ¢ H

graphs in F are non-bipartite;
choose G, x(G) > |H| and og(G) > maxrecr og(F).
VFeF, F» G = g@r) 5 H.

two branching vertices of G(2P) cannot be mapped to a same
vertex



Proof of first step

Assume 3¢ : VG €C, (GE®) < (G — H).

@ —® preserved by homomorphisms on Suby,(Graph)

@ homomorphism preservation theorem =
AF, VYFEFF»G® = B H.

@ graphs in F are non-bipartite;
@ choose G, x(G) > |H| and og(G) > maxrecr og(F).
o VFEF, F» G2 = G .

@ two branching vertices of G(2P) cannot be mapped to a same
vertex

= G <IH Y



Proof of second step

e If C does not have bounded expansion, 3p : x(C V p) = .
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e By HPT, 3F C C finite s.t.
VG e, (FFeF:F—G) < G-»H,
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Proof of second step

e If C does not have bounded expansion, 3p : x(C V p) = .
e JH,®: og(H)>2p+5and GF® «— G » H,;
e By HPT, 3F C C finite s.t.
VG e, (FFeF:F—G) < G-»H,
@ F includes no bipartite graph;
o Let g = maxperog(F). As x(CV p) = o0,
e E-H conj. = 3G €CVp,0g(G) > g +2,x(G) > |H|;



Proof of second step

e If C does not have bounded expansion, 3p : x(C V p) = .
e JH,®: og(H)>2p+5and GF® «— G » H,;
e By HPT, 3F C C finite s.t.
VG e, (FFeF:F—G) < G-»H,

@ F includes no bipartite graph;
o Let g = maxperog(F). As x(CV p) = o0,

o E-H conj. = 3G € CVp,0g(G) > g +2,x(G) > |H|;

o T conj. = 3G €CVp,og(G) >g+2,06(G) > f(|H])

= 3G €CVp+3,08(G)>g+2,x(G) > |H;



Proof of second step

e If C does not have bounded expansion, 3p : x(C V p) = .
e JH,®: og(H)>2p+5and GF® «— G » H,;
e By HPT, 3F C C finite s.t.
VG e, (FFeF:F—G) < G-»H,

@ F includes no bipartite graph;
o Let g = maxperog(F). As x(CV p) = o0,

o E-H conj. = 3G € CVp,0g(G) > g +2,x(G) > |H|;

o T conj. = 3G €CVp,og(G) >g+2,06(G) > f(|H])

= 3G €CVp+3,08(G)>g+2,x(G) > |H;

o VF € F,F -+ G?*2 hence G(P+2) — H;



Proof of second step

e If C does not have bounded expansion, 3p : x(C V p) = .
e JH,®: og(H)>2p+5and GF® «— G » H,;
e By HPT, 3F C C finite s.t.
VG e, (FFeF:F—G) < G-»H,
@ F includes no bipartite graph;
o Let g = maxperog(F). As x(CV p) = o0,
o E-H conj. = 3G € CVp,0g(G) > g +2,x(G) > |H|;
o T conj. = 3G €CVp,og(G) >g+2,06(G) > f(|H])
= 3G €CVp+3,08(G)>g+2,x(G) > |H;
o VF € F,F -+ G?*2 hence G(P+2) — H;
@ two branching vertices of G(27*2) cannot have same image;
= x(G)<IH 1}
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hom(F, G)
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@ Very sparse graphs:
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Counting Statistics

F1

Fr—G

@ Dense graphs:

hom(F, G)
i

t(F,G) =
@ Very sparse graphs:

dens(F, G) = GR

(#F € G)
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Main Result

Looking for the exponent / the degree of freedom

@ How is % bounded when G is restricted to a class C?

@ How much vertices can be chosen independently when looking
for a copy of F?
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Main Result

Looking for the exponent / the degree of freedom

@ How is % bounded when G is restricted to a class C?

@ How much vertices can be chosen independently when looking
for a copy of F?

| \

Theorem
For every infinite class of graphs C and every graph F

lim lim sup —Iog(#F € G)

€ {—00,0,1,...,a(F),|F|},
=00 Gecvi log |G| t (FLIF1Y

where a(F) is the stability number of F.
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Assume G contains a large number of copies of F.
Then G contains many copies that form a regular structure?
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Generalized Sunflowers

Assume G contains a large number of copies of F.
Then G contains many copies that form a regular structure?

(k, F)-sunflower (C, Fy, ..., Fk)

Let F, G be graphs. A (k, F)-sunflowerin G is a (k + 1)-tuple
(C,F1,...,Fk), such that C C V(G),F; C P(V(G)), the sets in
{CYU; Fi are pairwise disjoints and there exists a partition

(K, Y1,..., Yx) of V(F) so that

o Vi, w(YiY) =0,

o G[C] = F[K],

o VX; € Fi, G[Xi] = F[Yi],

o V(Xq,...,Xx) € Fi X - X Fi, GICU X U---UXi] = F.
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Generalized Sunflowers

Assume G contains a large number of copies of F.
Then G contains many copies that form a regular structure?

(k, F)-sunflower (C, Fy, ..., Fk)

VXi € Fi,...Y X, € Fi

v ) G[CUX1U'”UXk] ~ F
7=\
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Generalized Sunflowers

Assume G contains a large number of copies of F.
Then G contains many copies that form a regular structure?

(k, F)-sunflower (C, Fy, ..., Fk)

VXi € Fi,...Y X, € Fi

s @ GICUX U -UXy] ~ F
ViR = k < a(F)
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Generalized Sunflowers

Assume G contains a large number of copies of F.
Then G contains many copies that form a regular structure?

(k, F)-sunflower (C, Fy, ..., Fk)

VXi € Fi,...Y X, € Fi

G[CUX U---UX] = F
= k < a(F) and

k
(#F < 6) > [[I7l.

i=1
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Main result

Clearing & Stepping Up

Let F be a graph of order p, let k € Nand let 0 < e < 1.
For every graph G such that (#F C G) > |G|t there exists in G
a (k+ 1, F)-sunflower(C, F1, ..., Fxy1) with

c 7(e,p)
min |F;| > 7| |
j (XP(G))VE
P
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Main result

Clearing & Stepping Up
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Motivation Sunflowers Main result Sketch

Consequence: Degrees of Freedom

If C is an infinite hereditary class such that for every integer p

limsup 7|og Xp(6)

=0
Ggec log|G]|

then for every graph F

€{-00,0,1,...,a(F)}.
Gec log |G| { (F)}
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Consequence: Degrees of Freedom

Theorem

If C is an infinite nowhere dense hereditary class then for every
graph F

C
lim sup —Iog(#F =10

€{—00,0,1,...,a(F)}.
Gec log |G| { (F))

Hence for every infinite nowhere dense class C

-
lim Iim sup w

€{—-00,0,1,...,a(F)}.
inoo Gecvi  log|G]| { (F))

Although if C is an infinite somewhere dense class,

-
Iim lim sup w

— |F|.
inoo gecvi  log|G]| IF]
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Sketch of the Proof

To be proved

Let F be a graph of order p, let k € Nand let 0 < e < 1.
For every graph G such that (#F C G) > |G|t there exists in G
a (k +1, F)-sunflower(C, Fi,..., Fxy1) with

ca(p)eP
. G| )
min | Fi| > | ————&¢
i (Cl (P) (XP[(JG))

@ Reduction: general graphs — graphs with bounded tree-depth,
@ Reduction: graphs with bounded tree-depth — colored forests,
@ Proof for colored forests.

A\
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Reduction to bounded tree-depth

Xp(G) colors (Xp

TN

=— G has and induced subgraph G’ such that
(#F € G') > (#F < G)/(**?)) and td(G") < p.

(G)> subgraphs
p
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e Color coding |F| =p = #levels — < ci(p) possibilities

(0,1,0,1,0,0,1) @
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Reduction to colored forests

e Color coding |F| =p = #levels — < ci(p) possibilities

(0,1,0,1,0,0,1)

(1,1,0,0,1,0) (0,0,1,1,1,0) (0,1,0,1,0,1)

(0,0,1,0,0)

(1,0,0,0)

(0,0,0)

(0,0)

1)

(0)



Sketch

Sketch of the proof for colored forests

Proof by induction on the height of the forest F.

o

2]

Determine where the components of F have to be mapped to
get a positive fraction of the copies and some regularity,

Partition the components of F depending on the type of
images,

Select a large “regular” subtree while non decreasing the
logarithmic density of copies of F,

Use induction to find a (k + 1, F)-sunflower
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Random graphs (Erdés-Rényi model)

G(n, p): graph with n vertices, each edge appears independently
with probability p = p(n).
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Random graphs

First properties

e Vc > 1 36(c) such that
5(c)Vn <h(G(n,c/n) <2en  (aas)
o If 14+ ¢ < (n—1)p = o(y/n) then
he(G(n. p)) ~ A(G(n, p)) = O(log n/ loglog n)  (a.a.5.)

@ the expected number of cycles of length t in G(n,c/n) is at
most (e?c/2)! = E(w(G V d)) ~ (Ac)?9.
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Another characterization of bounded expansion

A class C of graphs has bounded expansion if, and only if, there
exists functions Fy, Fprop, Faeg : RT — R such that:

~ H
VreN,VHC GeC, V.(H)>Fy(r)= H = ool )

: >
Ve>0, liminf v e 6 :d(v) 2 Fag()] _
GeC |G|
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Random graphs

A.a.s. every subgraph H of G(n,d/n) with t < (4d)~(1+1/9p
vertices satisfies Vo(H) <1+ €.
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Random graphs

Lemma

A.a.s. every subgraph H of G(n,d/n) with t < (4d)~(1+1/9p
vertices satisfies Vo(H) <1+ €.

Lemma
IfV,(G) > 2 then

| \

1
1+ —.
Vo(G) > +2r+1
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Random graphs

Lemma

A.a.s. every subgraph H of G(n,d/n) with t < (4d)~(1+1/9p
vertices satisfies Vo(H) <1+ €.

Lemma
IfV,(G) > 2 then

| \

1
1+ —.
Vo(G) > +2r+1

Every subgraph H of G(n,d/n) a.a.s. satisfies:

V,(H) > 2 = |H| > (4d)"Hz1)|G] . B




Overview Random graphs Queue number Stack number Non repetitive colorings

Random graphs

Let a > 1 and let ¢, = 4ea™ 4?9,
Asymptotically almost surely there are at most c,n vertices of
G(n,d/n) with degree greater than 8ad.
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Random graphs

Let a > 1 and let ¢, = 4ea™ 4?9,
Asymptotically almost surely there are at most c,n vertices of
G(n,d/n) with degree greater than 8ad.

For each d > 0 there exists a class Ry with bounded expansion
such that G(n,d/n) a.a.s. belongs to Rg.




Random graphs

A consequence

Let d > 0. Then for every p € N there exists a graph D, such that
G(n,d/n) a.a.s. satisfies

Cop+1 —> G(n,d/n) = G(n,d/n) — Dp.

In other words: for G(n,d/n), each odd-cycle is the
“high-probability” obstruction of some H-coloring problem.
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Queue layout and queue number
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Queue number

Lemma (Dujmovi¢ and Wood, 2005)

If some (< t)-subdivision of a graph G has a k-queue layout, then
qu(G) < 3(2k +2)% — 1, and if t = 1 then qu(G) < 2k(k + 1).
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Queue number

Lemma (Dujmovi¢ and Wood, 2005)

If some (< t)-subdivision of a graph G has a k-queue layout, then
qu(G) < 3(2k +2)% — 1, and if t = 1 then qu(G) < 2k(k + 1).

Lemma (Heath, 1992; Pemmaraju, 1992; Dujmovi¢, 2004)

Every k-queue graph has average degree less than 4k.
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Queue number

Theorem

Graphs of bounded queue-number have bounded expansion. In
particular N
V4(G) < (2k +2)*

for every k-queue graph G.

Proof.

Let X € GV d and H be the subdivision of X in G. Then
an(H) < k = aqn(X) < 3(2k + 2)*9. Thus the average degree of
X is < & = 2(2k 4+ 2)*. Hence V4(G) < (2k + 2)*. O

| \

4
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Queue number (a better bound)

Lemma

Let G be a graph with a k-queue layout and let H € GV r.
Then H has an f,(k)-queue layout, where

£(k) = 2k (%)2 .
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Queue number (a better bound)

Lemma

Let G be a graph with a k-queue layout and let H € GV r.
Then H has an f,(k)-queue layout, where

£(k) = 2k (%)2 .

| A

Theorem

If G has a k-queue layout then

d+1 1\ ?2
V4(G) < 8k <(2k2)k_11> .
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Lemma (Enomoto, Miyauchi and Ota, 1999)

Let G be a graph such that some (< t)-subdivision of G has a
k-stack layout for some k > 3. Then

4k(5k — 5)t+1

<
6l = =5 —

Gl -
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Lemma (Enomoto, Miyauchi and Ota, 1999)

Let G be a graph such that some (< t)-subdivision of G has a
k-stack layout for some k > 3. Then

4k(5k — 5)t+1

<
6l = =5 —

Gl -

Theorem

| \

Graphs of bounded stack number have bounded expansion. In

particular:

~ 4k(5k — 5)%r+t
< - =)
Vel =56

for every k-stack graph G.
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Non repetitive colorings

@ Non repetitive colorings
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Topological parameters

A real-valued graph parameter « is strongly topological if there
exist functions fi, f, such that for every graph G and any
< 1-subdivision G’ of G the following holds:

a(6) <fi(a(G))  and  a(G) < H(a(C)).

Examples: girth, Hadwiger number, queue number, Thue number



Non repetitive colorings

Topological parameters

A real-valued graph parameter « is strongly topological if there
exist functions fi, f, such that for every graph G and any
< 1-subdivision G’ of G the following holds:

a(6) <fi(a(G))  and  a(G) < H(a(C)).

Examples: girth, Hadwiger number, queue number, Thue number

Lemma

Let o be a graph parameter and let C be an infinite class. Then the
two following conditions are equivalent:

e there exists no positive integer r such that o(C V r) = oo,

@ there exists a strongly topological monotone graph parameter
0 bounding o such that p(C) < co.
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Thue number

Lemma

VG’ < 1-subdivision of G, if 7(G") < k, then

.22(k+1)2 _1

7(G) < (k + 1) - 220402 ((k + 1)(k + 2)(2k + 3)) K*D)

Conversely, n(G') < 7n(G) + 1.
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Thue number

Lemma
VG’ < 1-subdivision of G, if 7(G") < k, then

.22(k+1)2 _1

7(G) < (k + 1) - 220402 ((k + 1)(k + 2)(2k + 3)) K*D)

Conversely, n(G') < 7n(G) + 1.

A\

Lemma (Barat and Wood,2008)
G| < (2n(G)—2)|G|.

For every graph G,
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Thue number

Lemma
VG’ < 1-subdivision of G, if 7(G") < k, then

.22(k+1)2 _1

7(G) < (k + 1) - 220402 ((k + 1)(k + 2)(2k + 3)) K*D)

Conversely, n(G') < 7n(G) + 1.

A\

Lemma (Barat and Wood,2008)

For every graph G, ||G|| < (27(G) —2) |G]|.

For every k, the class of all graphs G with w(G) < k has bounded
expansion.
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Low tree depth decomposition

@ Low tree depth decomposition
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Algorithmic version of LTDD theorem

for k=1to 2P 1 +1do
Compute a fraternal augmentation.
end for
Compute depth p transitivity
Compute the conflict graph and color it




Decomposition Subgraph isomorphism problem First-order decidabilit

Algorithmic version of LTDD theorem

for k=1to 2P 1 +1do
Compute a fraternal augmentation.
end for
Compute depth p transitivity
Compute the conflict graph and color it

Theorem

| A\

For every integer p there exists a polynomial P, (of degree about
22") such that for every graph G Procedure A computes a

(p + 1)-centered coloring of G with Np(G) < Pp(62,,_2+%(G))
colors in time O(N,(G)n)-time.

A
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Subgraph isomorphism problem

Subgraph isomorphism problem

Context Complexity Reference(s)

General O(n®792 IH1) | Nezetfil-Poljak using
Coppersmith-Winograd

Bounded tree-width | O(n) Eppstein; Courcelle
Planar O(n) Eppstein

Bounded genus O(n) Eppstein

Bounded expansion | O(n) POM-Nesetfil

Nowhere dense nlto(l) POM-Nesetfil
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Theorem

Let L: V(G) — 2V(F) be a list assignment. The number of
homomorphisms f : F — G such that u € L(f(u)) for every u € F
can be computed in time O(|F|td(G)2/FI1d(¢)|G)).

| A

Corollary

The number of subgraphs of G isomorphic to fixed F can be
computed in time O(|F|td(G)2/FIt(®)|G)).
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First-order decidability

Theorem (Dvorak, Kral, Thomas 2010)

Let C be a class of graphs with bounded expansion, L a language
and ¢ an L-sentence. There exists a linear time algorithm that
decides whether an L-structure with Gaifman graph € C satisfies ¢.
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First-order decidability

Theorem (Dvorak, Kral, Thomas 2010)

Let C be a class of graphs with bounded expansion, L a language
and ¢ an L-sentence. There exists a linear time algorithm that
decides whether an L-structure with Gaifman graph € C satisfies ¢.

Theorem (Dvorak, Kral, Thomas 2010)

Let C be a class of graphs with locally bounded expansion, L a
language and ¢ an L-sentence. There exists an almost linear time
algorithm that decides whether an L-structure with Gaifman graph
€ C satisfies ¢.
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Hyperfinite classes

Definition (Elek, 2006)

A class C of (finite) graphs is hyperfinite if for every positive real

€ > 0 there exists a positive integer K(¢) such that every graph

G € C has a subset of at most € |G| edges whose deletion leaves no
connected component of order greater than K(e).
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Hyperfinite classes

Definition (Elek, 2006)

A class C of (finite) graphs is hyperfinite if for every positive real

€ > 0 there exists a positive integer K(¢) such that every graph

G € C has a subset of at most € |G| edges whose deletion leaves no
connected component of order greater than K(e).

Motivation

| A

@ Local weak convergence (Benjamini, Schramm; Aldous, Lyons)

@ Property testing (Goldreich and Ron model for bounded
degree)
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Hyperfinite classes

Hyperfiniteness and convergence

e (G,o0): rooted graph; Bg(o, r): ball of radius r (isom. type);

e Gu: locally finite graphs with A < M; QARJ: finite graphs with
A< M;

e p((G,0),(G'",0")) =1/sup{r: Bg(o,r) = Bg/(0',r)}
(metric);

@ Miy: space of all probability measures on Gy that are
measurable with respect to the Borel o-field of p

e weak convergence of measures: E,(f) — E(f) for all bounded,
continuous functions f ~» 9, compact;

o VU QARﬂ — My for G € gAg/, choose randomly o, let G, =
connected component of o; then V(G) = law of (G, 0).
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Property testing

Property testing

P, a class of graphs (property), G a graph with A(G) < d, ¢ > 0.

e If G € P, G has the property P;

e if > ed|G| adjacencies have to be changed to make it € P,
then G is e-far from P.
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Property testing

P, a class of graphs (property), G a graph with A(G) < d, ¢ > 0.

e If G € P, G has the property P;

e if > ed|G| adjacencies have to be changed to make it € P,
then G is e-far from P.

Testing algorithm

A tester T for P and accuracy e: randomized algorithm
e Input: |G| and adjacency list of G;
e Output: accept or reject;

e G € P = accept with probability > 2/3;
o G e-far from P = reject with probability > 2/3;

Query complexity q1(n); P testable if sup, g7 (n) < C(e).
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Hyperfiniteness and property testing

Theorem (Benjamini, Schramm and Shapira, 2008)

Every monotone hyperfinite graph property is testable.

For instance, planarity is testable in the bounded degree model.

Idea of the proof

Pseudometric p,(G, G') =>4 ‘#V’ BfG(‘(’r)gH _#Y Bfé;(/}/l’r)EH‘;
If Ir such that

inf G,G") >0
Geﬁyc,egpr( ,G") >

then P and Q are distinguishable.
Ve > 0, P and e-far(P) distinguishable — P testable.
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Weakly hyperfinite classes

Definition

C is weakly hyperfinite if Ve > 0,3K(€), VG € C, G has a subset of
at most €| G| vertices whose deletion leaves no connected
component of order greater than K (e).
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Weakly hyperfinite classes

Definition

C is weakly hyperfinite if Ve > 0,3K(€), VG € C, G has a subset of
at most €| G| vertices whose deletion leaves no connected
component of order greater than K (e).

A monotone class C of graphs with bounded average degree is
weakly hyperfinite if and only if for every integer M the class
C NGY, is hyperfinite.
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Separators

Vertex separators

a-vertex separator of G: subset S such that every connected
component of G — S contains at most an vertices.

sg(i) = |r}\1|i>g min{|S| : S is a 3-vertex separator of G[A]},
ACV(G)

¢(n)= sup min{|S|:Sisa %—vertex separator of G}.
GeC,|G|<n

Hence if C is hereditary,

¢(n) = sup sg(n).
GeC
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Concave approximation

@ The convex conjugate of a lower semi-continuous function
¢ X = RU{oo} is the function ¢* : X* — R U {oo} defined
by
¢*(x*) = sup{(x™, x) — ¢(x) : x € X}.
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Concave approximation

@ The convex conjugate of a lower semi-continuous function
¢ X = RU{oo} is the function ¢* : X* — R U {oo} defined
by
#(x*) = sup{{x*, ) — B(x) : x € X}.
@ The convex biconjugate ¢** of ¢ is the closed convex hull of

¢, i.e. the largest lower semi-continuous convex function
smaller than ¢.



Separators

Concave approximation

@ The convex conjugate of a lower semi-continuous function
¢ X = RU{oo} is the function ¢* : X* — R U {oo} defined
by
¢*(x*) = sup{(x*,x) — ¢(x) : x € X}.
@ The convex biconjugate ¢** of ¢ is the closed convex hull of
¢, i.e. the largest lower semi-continuous convex function
smaller than ¢.

o for non-decreasing function f : N — R™ define
f(x) = —g**(—x), where

g(x) = f(Ix]) + (x = Ix))(F([xT) = F([x]))-

— f is the smallest upper continuous concave function > f.



Hyperfinite classes Property testing Weakly hyperfinite Separators

Sublinear separators

Let C be a monotone class of graphs. The following are equivalent:

@ the graphs in C have sublinear vertex separators:

min{|S| : S is a 3-vertex separator of G} _a

limsu
b G|
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Hyperfinite classes Property testing Weakly hyperfinite Separators

Sublinear separators

Let C be a monotone class of graphs. The following are equivalent:

@ the graphs in C have sublinear vertex separators:

min{|S| : S is a 3-vertex separator of G} B

lim sup 0:
Gec |G|
i o 2 o mapt ey nepd —g
n—00 GeC n— o0 n 6o n
o limsup w(G) =0; IimsupM =0.
cec G| cec' |G|




Hyperfinite classes Property testing Weakly hyperfinite Separators

Weak hyperfiniteness from sublinear separators

Let G € C have order n, let i : V(G) — [0, 1] be a probability
measure and let 0 < v < 1 be a positive real.

Then there exists a set C of cardinality at most 3$(2un/3) /1 such
that no connected component of G — C has a measure greater than

L.




Hyperfinite classes Property testing Weakly hyperfinite Separators

Weak hyperfiniteness from sublinear separators

Theorem

Let G € C have order n, let i : V(G) — [0, 1] be a probability
measure and let 0 < v < 1 be a positive real.

Then there exists a set C of cardinality at most 3$(2un/3) /1 such
that no connected component of G — C has a measure greater than

Corollary

~
A

Let C be a monotone class of graphs with bounded average degree
and sublinear vertex separators. Then:

@ the class C is weakly hyperfinite;

@ if C has bounded maximum degree, it is hyperfinite.

A




Separators

Proof

Let e >0, G €C, n=|G| and p(v) = 1/n for every v € V(G).

0 As limy_oo $(x)/x =0,
3K : S(2K/3)/(2K /3) < €/2.

Let . = K/n.
= 1S of cardinality at most
3¢(2en/3)  $(2K/3)

= n<en

L 2K/3

such that no connected component of G — S has a measure
greater than « = K /n, i.e. an order greater than K. O

@



Separators

Sublinear separators

@ every planar graph has a O(y/n) separator (Lipton, Tarjan)

e graphs with genus g have a separator of size O(,/gn) (Gilbert,
Hutchinson, and Tarjan)

e graphs excluding K, as a minor have a O(h3/2\/n) separator
(Alon, Seymour, and Thomas)



Hyperfinite classe Property testin Weakly hyperfinit Separators

Sublinear separators

@ every planar graph has a O(y/n) separator (Lipton, Tarjan)

e graphs with genus g have a separator of size O(,/gn) (Gilbert,
Hutchinson, and Tarjan)

e graphs excluding K, as a minor have a O(h3/2\/n) separator
(Alon, Seymour, and Thomas)

Theorem (Plotkin, Rao, and Smith, 1994)

Given a graph with m edges and n nodes, and integers | and h,
there is an O(mn/l) time algorithm that will either produce a
Kp-minor of depth at most Ilog n or will find a separator of size at
most O(n/l + 4Ih% log n).




Hyperfinite classes Property testing Weakly hyperfinite Separators

Polynomial w-expansion

Theorem

Let C be a class of graphs with polynomial w-expansion, i.e. such
that there exists a polynomial P which satisfies

Vie N,VG € C, w(G Vi) < P(i).

Then the graphs of order n in C have separators of size
s(n)=0 ((n log n)l_ﬁ) which may be computed in time
O(ns(n)) = o(n?), where d is the degree of P.




Hyperfinite classes Property testing Weakly hyperfinite Separators

Sub-exponential w-expansion

Theorem

Let C be a class of graphs with sub-exponential w-expansion, i.e.
such that | .
: ogw
limsup sup gi()
i—oo GECVi !

=0.

Then the graphs of order n in C have separators of size s(n) = o(n)
which may be computed in time O(ns(n)) = o(n?).




Hyperfinite classes Property testing Weakly hyperfinite Separators

Sub-exponential w-expansion

Theorem

Let C be a class of graphs with sub-exponential w-expansion, i.e.
such that | .
: ogw
limsup sup gi()
i—oo GECVi !

=0.

Then the graphs of order n in C have separators of size s(n) = o(n)
which may be computed in time O(ns(n)) = o(n?).

Let P be a monotone class of graphs with sub-exponential
w-expansion.
Then the property G € P is testable in the bounded degree model.




The edge version: Many colors in cycles
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Each cycle v gets > 2 colors:

This means that no cycle is monochromatic.

The minimum number of colors required for
G is the arboricity Arb(G).

Theorem (Nash-William, 1964)

Arb(G)= _max M‘H_” J .

HCG, |H|>1




Each cycle v gets > 2 colors:

This means that no cycle is monochromatic.

The minimum number of colors required for
G is the arboricity Arb(G).

Theorem (Nash-William, 1964)

Arb(G) = AL w :

ax
HCG. [H|>1 “H\ —1

e Extends to matroids (Edmonds, 1979).



Each cycle v gets || colors:

Proposition

The minimum number of colors required to color a graph G is the
maximum number of edges in a 2-connected component (block) of

G.




Each cycle v gets || colors:

Proposition

The minimum number of colors required to color a graph G is the
maximum number of edges in a 2-connected component (block) of

G. |
Each cycle « gets || colors

<= every cycle is rainbow

<= every 2-connected component is rainbow.




The General Problem

What is the minimum N¢(G, p) such that the edges of G can be
colored by N¢(G, p) colors in such a way that each cycle v gets

@ either > f(|v]) colors,

@ or > p colors.




The General Problem

What is the minimum N¢(G, p) such that the edges of G can be
colored by N¢(G, p) colors in such a way that each cycle v gets

@ either > f(|v]) colors,

@ or > p colors.

e Equivalently, each cycle v gets > min(p + 1, f(|7])) colors;
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The General Problem

What is the minimum N¢(G, p) such that the edges of G can be
colored by N¢(G, p) colors in such a way that each cycle v gets

@ either > f(|v]) colors,

@ or > p colors.

e Equivalently, each cycle v gets > min(p + 1, f(|7])) colors;
@ For which class C is it true that

Vpe N sup N¢(G,p) < o0?
GeC

e Connection with graph density?



Shallow Topological Multi-Minors — Top Multigrad V/,(G)

P

>~

HeGwr @< 2r-subdivision %
Y/l

HHll
= —F, Hed
(@) = max |H\ c V/T



Relationship between V/,(G) and V,(G)

Let G be a graph and let t be the maximum integer such that G
contains two vertices linked by t disjoint paths of length at most
2r+1. Then

max(t/2,V,(G)) < V(G) < (t + 1)V,(G).



Each cycle v gets > min(p + 1, f(|y|)) colors:

f : N — N increasing unbounded and f(x) < x; p € N.
We denote by N¢(G, p) the number of colors required.

Theorem (Nesetfil, POM, Zhu, 2010)

For every graph G and every integer r,

V. (G) < Poly,(f1(2r +2), N¢(G, 2r 4 2)).




Each cycle v gets > min(p + 1, f(|y|)) colors:

f : N — N increasing unbounded and f(x) < x; p € N.
We denote by N¢(G, p) the number of colors required.

Sketch of the Proof.
Consider a good coloring with N¢(G,2r + 2) colors.

e If His a 2-connected component of a subgraph induced by
2r + 2 colors then the tree-depth of H is bounded by

td(H) < Poly(f1(2r +2)).

o If all the 2-connected components of subgraphs induced by
2r + 2 colors have tree-depth at most t then

V(G) < Poly,(t, N¢(G, 2r + 2)).




Each cycle v gets > min(p + 1, f(|y|)) colors:

Theorem (Nesetfil, POM, Zhu, 2010)
Let C be a class of graphs. Then the following are equivalent:

@ There exists increasing unbounded f : N — N such that

Vp €N, sup N¢(G, p) < o
GeC

Q Let fy(x) = [log, x|. Then

Vp e N, sup Ng (G, p) < o0
GeC

© the class C has bounded expansion, that is:

VreN, sup V,(G) < o0
GeC




Each cycle v gets > min(p + 1, f(|y|)) colors:

The corollary is tight

Let fo(x) = [log, x| and fi(x) = fo(x) + 1.
For every integer p > 3, the minor closed class C of graphs with
tree-depth at most p is such that

sup Ng(G,2P71) < oo but sup Ng(G,2°71) = oo,
GeC GeC




Each cycle v gets > min(p + 1, f(|y|)) colors:

The corollary is tight

Let fo(x) = [log, x| and fi(x) = fo(x) + 1.
For every integer p > 3, the minor closed class C of graphs with
tree-depth at most p is such that

sup Ng(G,2P71) < oo but sup Ng(G,2°71) = oo,
eC GeC

Q)
. A\

By standard pigeonhole argument.




The Pigeonhole Argument

Large graph of tree-depth p with edges colored by N colors



The Pigeonhole Argument

Extract a homogeneous subgraph



The Pigeonhole Argument

Consider a cycle of length 2P~1



Each cycle v gets > min(p + 1, |7y|) colors

Definition: for an integer p, the generalized arboricity Arb,(G) is
the minimum number of colors required to color the edges of G is
such a way that each cycle v gets > min(p + 1, |v|) colors.



Each cycle v gets > min(p + 1, |7y|) colors

Definition: for an integer p, the generalized arboricity Arb,(G) is
the minimum number of colors required to color the edges of G is
such a way that each cycle v gets > min(p + 1, |v|) colors.

The r-acyclic edge chromatic number a,(G) of a graph G is the
minimum number of colors required to color the edges of G in such
a way that adjacent edges receive different colors and every cycle
receives at least min(|7|, r) colors (Gerke, Greenhill and Wormald,
2006).



Each cycle v gets > min(p + 1, |7y|) colors

Definition: for an integer p, the generalized arboricity Arb,(G) is
the minimum number of colors required to color the edges of G is
such a way that each cycle v gets > min(p + 1, |v|) colors.

The r-acyclic edge chromatic number a,(G) of a graph G is the
minimum number of colors required to color the edges of G in such
a way that adjacent edges receive different colors and every cycle
receives at least min(|7|, r) colors (Gerke, Greenhill and Wormald,
2006).

For graphs G with maximum degree d, a,(G) = ©(dl"/?)
(Greenhill and Pikhurko, 2006).



Each cycle v gets > min(p + 1, |7y|) colors

Theorem (Nesetfil, POM, Zhu, 2010)

For an integer p and a multigraph G, it holds:

V5-1(G)M/P <Arb,(G) < Poly,(V-1(G))
2 2

and

max( V: (G)Y) A(G)) <a,(G) < Poly,(V:(G)) + A(G),

L
2

NI~

where V,(G) is the maximum of ||H||/|H| over multigraphs H
such that G includes a < 2r-subdivision of H.




Duality

Let Arb;(G) be the minimum number of colors required for an
edge coloring of G such that every cocyle w gets > min(p + 1, |w|)
colors.

For every p,n, g, N there exists | Every (2p + 2) edge-connected
a graph G such that graph G satisfies

|G| > n, Arb3(G) =p +1.

girth(G) > g,
Arby(G) > N.




Conclusion




Sparsity
(Graphs, Structures, and Algorithms)

J. Nesetril and P. Ossona de Mendez

Springer




Thank you!
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