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COLORING POWERS AND GIRTH*
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Abstract. Alon and Mohar (2002) posed the following problem: among all graphs G of maxi-
mum degree at most d and girth at least g, what is the largest possible value of x(G*), the chromatic
number of the tth power of G? For t > 3, we provide several upper and lower bounds concerning this
problem, all of which are sharp up to a constant factor as d — co. The upper bounds rely in part
on the probabilistic method, while the lower bounds are various direct constructions whose building
blocks are incidence structures.
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1. Introduction. For a positive integer t, the tth power Gt of a (simple) graph
G = (V, E) is a graph with vertex set V' in which two distinct elements of V' are joined
by an edge if there is a path in G of length at most ¢ between them. What is the
largest possible value of the chromatic number x(G?) of G, among all graphs G with
maximum degree at most d and girth (the length of the shortest cycle contained in
the graph) at least g?

For ¢t = 1, this question was essentially a long-standing problem of Vizing [11],
one that stimulated much work on the chromatic number of bounded degree triangle-
free graphs, and was eventually settled asymptotically by Johansson [6] using the
probabilistic method. In particular, he showed that the largest possible value of the
chromatic number over all girth 4 graphs of maximum degree at most d is ©(d/ log d)
as d — 00.

The case ¢t = 2 was considered and settled asymptotically by Alon and Mohar [2].
They showed that the largest possible value of the chromatic number of a graph’s
square taken over all girth 7 graphs of maximum degree at most d is ©(d?/logd) as
d — oo. Moreover, there exist girth 6 graphs of arbitrarily large maximum degree d
such that the chromatic number of their square is (1 + o(1))d? as d — oco.

In this work, we consider this extremal question for larger powers t > 3, which
was posed as a problem in [2], and settle a range of cases for g.

A first basic remark to make is that, ignoring the girth constraint, the maximum
degree A(G?) of G* for G a graph of maximum degree at most d satisfies

t—1

A(GY) <d) (d—1) <d,

i=1
and therefore we have the following as a trivial upper bound for our problem:

(1) X(G*) <AG) +1<d +1.

This bound is sharp up to a 1+ o(1) factor (as d — o0) for t =1 and g = 3, and for
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t=2and g <6 (as d = 00), but only two other cases for ¢t and g have been settled to
this precision, by examples for the so-called degree diameter problem; cf. [8]. Recall
that the De Bruijn graph of dimension n on an alphabet ¥ of size k is the directed
graph whose vertices are the words of ¥ and whose arcs link the pairs (a.u, u.b) for
all a,b € ¥, u € X" L. For all d even, the undirected and loopless version of the De
Bruijn graph of dimension ¢ on an alphabet of size d/2 contains d/2! vertices, and
every pair of its vertices can be linked with a path of length at most ¢; this certifies
the general upper bound (1) to be sharp only up to a (1+0(1))2! factor. It is known,
via the degree diameter problem, that this factor can be improved upon in many cases
for t. However, De Bruijn graphs (and other constructions) have many short cycles
and we are mostly interested here in whether the bound in (1) can be attained up to
a constant factor by, or instead significantly lowered for, those graphs G having some
prescribed girth.

Alon and Mohar showed that the largest possible value of the chromatic number
X(G?) of Gt, among all graphs G with maximum degree at most d and girth at least
3t + 1 is ©(d"/logd) as d — oo. Kaiser and the first author [7] remarked that the
same statement with 3t 4 1 replaced by 2t + 3 could hold. In our first result, we make
a further improvement by proving it necessary to exclude only the cycles of length 6
if t = 2 or of length in {8,10,...,2t 4+ 2} when ¢ > 3 in order to obtain an asymptotic
reduction upon the bound in (1).

THEOREM 1. The largest possible value of the chromatic number x(G?) of Gt,
taken over all graphs G of maximum degree at most d containing as a subgraph no
cycle of length 6 for t = 2 or of length in {8,10,...,2t + 2} for t > 3 is ©(d!/logd)
as d — oco.

For ¢ = 3, this says that the chromatic number of the cube of a graph of maximum
degree at most d containing no cycle of length 8 is ©(d?/log d) as d — oo. The largest
forbidden cycle length 2¢ + 2 in Theorem 1 may not in general be reduced to 2t + 1
or 2t because of the girth 6 examples mentioned for case t = 2. We made no effort to
optimize the constant factors implicit in the ©(d!/log d) term of Theorem 1, although
doing so could be of interest in, say, the ¢ = 2 and ¢t = 3 cases. We prove Theorem 1
in section 2.

We make a side remark that, with respect to the case t = 1, excluding any fixed
cycle length is sufficient for a logarithmic improvement over (1).

PROPOSITION 2. Let k > 3. The largest possible value of the chromatic number
X(G) of G, taken over all graphs G of mazimum degree at most d containing as a
subgraph no cycle of length k, is ©(d/logd) as d — oo.

Before continuing, we introduce some abbreviating notation:
Xg(d) == max{x(G") : A(G) < d and 4(G) > g},

where A(G) is the maximum degree of the graph G and ¢(G) is its girth. In this
language, we have xi(d) ~ d, while xi(d) = ©(d/logd), and x%(d) ~ d?, while
x7(d) = ©(d?/logd). Alon and Mohar showed x/ (d) = Q(d"/log d) for every ¢ and g,
and Theorem 1 thus implies that x5, 5(d) = ©(d"/logd) as d — oc.

A motivating conjecture for us is one of Alon and Mohar, asserting that for every
t there is a critical girth g; such that x{, (d) = ©(d") and x}, ,,(d) = ©(d"/logd), just
asfort =1 (g1 =3) and t = 2 (g2 = 6). We are not aware of any previous work, for
any t > 3, showing that gy, if it exists, is greater than 3.
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TABLE 1
Bounds on the conjectured critical girth g¢ (if it exists).

t|1 2 3 4 5 6 7 8 9 10 >11
g>|3 6 4 6 6 6 6 6 8 6 8
g+1<|4 7 9 11 13 15 17 19 21 23 2t+3

Our second contribution in this work is to give Q(d") lower bounds on x},(d) for
various choices of t and g(< 2t + 2). We show, in particular, that g, if it exists, is at
least 4 for t = 3, at least 6 for all t > 4, and at least 8 for all ¢ > 11.

THEOREM 3. There are constructions to certify the following statements hold.
(i) x3(d) = d3/23 as d — oo and x3(d) = 3d3/23 for infinitely many d;

(i) xa(d) = d*/2* as d — oo and x3(d) = 2d*/2* as d — oo;

(iii) x8(d) = d®/2° as d — oo and x5(d) 2 5d°/2° for infinitely many d;

(iv) x&(d) = d®/25 as d — oo and x§(d) = 3d®/2° for infinitely many d;

(v) x&(d) 2 2d"/27 as d — oo;

(vi) x8(d) = d®/28 as d — oo and x§(d) = 3d®/2® for infinitely many d;

(vii) x&%(d) = d*°/2'0 as d — oo and xE0(d) 2 5d'° /210 for infinitely many d;
(vili) fort =9 ort > 11, xt(d) = d'/2" as d — oo, x4(d) = 3d'/2" for infinitely

many d, and, if 5|t, then x§(d) = 5d" /2" for infinitely many d.
Moreover, these constructions are bipartite if t is even.

These lower bounds are obtained by a few different direct methods, including a
circular construction (section 3) and two other somewhat ad hoc methods (section 4).

A summary of current known bounds for Alon and Mohar’s problem is given in
Table 1. When reflecting upon the gaps between entries in the upper and lower rows,
one should keep in mind that among graphs G of maximum degree at most d and of
girth lying strictly within these gaps, the current best upper and lower bounds on the
extremal value of x(G?) are off by only a logd factor from one another. We would
be intrigued to learn of any constructions that certify liminf; ., g+ = oo, or of any
upper bound on limsup,_, (g + 1)/t strictly less than 2.

2. An upper bound for graphs without certain cycles. The proof of Theo-
rem 1 relies on the following result due to Alon, Krivelevich, and Sudakov [1], showing
an upper bound on the chromatic number of a graph whose maximum neighborhood
density is bounded. This result invokes Johannson’s result for triangle-free graphs
and is thereby reliant on the probabilistic method.

THEOREM 4 (see [1]). For all graphs G = (V E) with mazimum degree at most
A such that for each v € V there are at most A edges spanning N(0), it holds that

X(G) = (m) as A — co.
Before proving Theorem 1, let us warm up with a proof of Proposition 2.

Proof of Proposition 2. Let G be a graph of maximum degree at most d with
no cycle of length k. Let x be any vertex of G and consider the subgraph G[N(z)]
induced by the neighborhood of z. It clearly has at most d vertices. Since G contains
no cycle of length k, G[N(z)] contains no path of length & — 2. Thus, by a result
of Erdés and Gallai [3] on the Turdn number of paths, G[N(z)] contains at most
(k — 3)d/2 edges. By applying Theorem 4 with A = d and f = 2d/(k — 3), it follows
that x(G) = O (d/logd) as d — oo. There are standard probabilistic examples having
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arbitrarily large girth that show this bound to be sharp up to a constant factor; cf. [9,
Ex. 12.7]. d

Proof of Theorem 1. Alon and Mohar [2] showed that x!(d) = Q(d"/logd) as
d — o0, so it suffices to provide the upper bounds.

Let G be a graph of maximum degree at most d satisfying the required forbidden
cycle conditions. Our plan is to apply Theorem 4 with G = G, A = d*, and f = Q(d),
directly obtaining the bound on y(G?) we desire. For the proof of Theorem 1, it
remains to show that the number of edges spanning the neighborhood of any vertex
in G* is O(d*1).

Let x be any vertex of G. Let us denote by A; = A;(x) the set of vertices of G
at distance exactly i from z. Clearly, we have that |4;| < Z;Zl |A;| < d for all 4.

We want to show that the number of pairs of vertices from Uzzl A; that are within
distance ¢ of one another is O(d**~!). Note that the number of such pairs with one
vertex in A;, for some ¢ < t, is at most d*t? < d?*~!'. In fact, we shall show the
stronger assertion that the number of paths of length ¢ both of whose endpoints are
within distance t of z is O(d**~!). Note here that the number of such paths of length
i, for some i < t, is at most d*(d — 1)* < d**~1.

With the assumption on forbidden cycle lengths in G, we show the following
claims.

CLAIM 5. The induced subgraph G[A;—1U A¢] contains no 6-path x1y1T2y2x3y3Ta
such that x; € Ay_1 for all i.

CLAIM 6. The induced subgraph G[A;U Azy1] contains no 6-path x1y122y223y324
such that x; € Ay for all i.

Proof of Claim 5. For t = 2, G[A; U As] contains no 4-path 21y z2y223 such that
x1,x9,23 € Ay, or else this path together with x forms a cycle of length 6.

So suppose t > 3 and z1y122y2w3y3x4 is a 6-path in G[A;—1 U A;] such that
x; € A;_q for all 7. In a breadth-first search tree rooted at x, let a be the last common
ancestor of x; and z3. If a € A; for some i < t—2, then there is a cycle containing the
vertices a, 21, y1, T2, Y2, x3 of length 2(t—1—4)+4 € {8,10,...,2t+2}. Soa € A;_o.
Similarly, if b is the last common ancestor of x5 and x4, then b € A; 5. If a = b, then
ax1Y1T2Y223Yy3raa is a cycle of length 8. Otherwise, axiyix2bxaysxsa is a cycle of
length 8. In all cases we obtain a contradiction to the forbidden cycle conditions. 0O

Proof of Claim 6. Fort = 2, suppose that G[A3UA3] contains a 4-path 1 y1 22y223
such that z1,z9, 23 € As. In a breadth-first search tree rooted at x, let a be the last
common ancestor of 7 and x3. It must be that a = z or else a together with the
4-path forms a cycle of length 6. Then we consider the last common ancestors a’ of
z1 and x2 and a” of x5 and x3. If neither of these is x, then xa'r1y 220" is a cycle of
length 6, a contradiction. Otherwise, if say a’ is x, then there is a cycle containing x,
1, Y1, To that has length 6, a contradiction.

So suppose t > 3 and z1y122y2w3y3x4 is a 6-path in G[A; U Asqq] such that
x; € Ag for all i. We may attempt the same argument as for Claim 5, except that the
last common ancestor a of 1 and x3 may well be in Ay, i.e., a = x, which does not
contradict the cycle condition. In this case, we consider the last common ancestors
a’ of 1 and w9 and a” of x5 and z3. If neither of these is z, then there is a cycle
of length 2t + 2 which contains z, a/, z1y172, and a”, a contradiction. Otherwise, if
say a’ is x, then there is a cycle containing x, 1, y1, T2 that has length 2t + 2, a
contradiction. So continuing as in the proof of Claim 5, we obtain a contradiction in
all cases. a
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We can proceed with counting the (ordered) ¢-paths that join two vertices within
distance t of xz. We use the two claims to estimate the number of t-paths containing
particular vertices and edges.

Let us call a vertex u of G a bottleneck of type 1 if u € Ay and u has at least
four neighbors in A;_;. We shall show that the vertices of A;_1 are adjacent to
at most 2 bottlenecks of type 1 on average. Indeed, let v’ € A;_; be adjacent to
k > 3 such bottlenecks; call them yi,¥y2,...,yr. Let Y = {y1,...,yx} and U =
N(Y)NnA,_1\{u'}. Every vertex of U is adjacent to exactly one bottleneck of type 1.
For otherwise suppose u” € U were adjacent to two bottlenecks of type 1, y € YV
and z. Then, using £ > 3 and the definition of a bottleneck of type 1, there would
exist a € N(z) N A1 \{v,v"}, v €e Y\ {y,z},and b € N(y') N A1 \ {a, v, u"}.
And so azu"yu'y’b would be a 6-path in G[4;—1 U A;], a contradiction to Claim 5.
Since any bottleneck of type 1 has at least four neighbors in A;_1, it follows that
|[U| > 3k. We then compute that the average adjacency to bottlenecks of type 1
from {W'}UU is (k+|U)/(1+|U]) <1+ (k—1)/(3k+1) < 2. Since this accounts
for all vertices in A;_; adjacent to at least three bottlenecks of type 1, we conclude
that the overall average adjacency from A;_; is also at most 2, i.e., the number of
bottlenecks of type 1 is at most 2|A;_1| < 2d*~!. The number of t-paths containing a
given vertex is at most (¢t + 1)d(d — 1)!~! (where ¢ + 1 counts its position within the
path); therefore, the number of ¢-paths containing a bottleneck of type 1 is at most
2(t + 1)d!(d — 1)1 < 3td* 1.

Let us call an edge uv of G a bottleneck of type 2 if u € Ay, v € Ay, and v
has at least four neighbors in A;. We shall show that the vertices of A; are incident
to at most 2 bottlenecks of type 2 on average. Indeed, let v/ € A; be incident
to k > 3 such bottlenecks, call them u'y1,u'ya, ..., w'yr. Let Y = {y1,...,yx} and
U=N({Y)nA\{v'}. Every vertex of U is incident to exactly one bottleneck of type 2.
For otherwise suppose v’ € U were incident to two bottlenecks of type 2, u”y with
y € Y and u”z. Then, using k > 3 and the definition of a bottleneck of type 2, there
would exist a € N(z)NA\{v',v"}, vy € Y\{y, 2}, and b € N(y')NA;\{a,v',uv"}. And
so azu"yu'y’b would be a 6-path in G[A;UA¢11], a contradiction to Claim 6. Since the
A1 endpoint of any bottleneck of type 2 has at least four neighbors in Ay, it follows
that |U| > 3k. We then compute that the average incidence to bottlenecks of type 2
from {v'}UU is (k+|U|)/(1+|U]) < 14+ (k—1)/(3k+1) < 2. Since this accounts for all
vertices in € A; incident to at least three bottlenecks of type 2, we conclude that the
overall average incidence from A; is also at most two, i.e., the number of bottlenecks
of type 2 is at most 2| A;| < 2d'. The number of ¢-paths containing a given edge is at
most t(d — 1)!~1; therefore, the number of t-paths containing a bottleneck of type 2
is at most 2d't(d — 1)t71 < 2td** 1.

Let us call an edge uv of G a bottleneck of type 3 if u,v € A;. By Claim 6,
G[A;] contains no 6-path, and so by the result of Erdds and Gallai [3] it has at most
2.5|A;| < 2.5d" edges. We can thus conclude that the number of t-paths containing a
bottleneck of type 3 is at most 2.5d%(d — 1)!~! < 3td*~1.

Now we concentrate on t-paths having both endpoints in A; and containing no
bottleneck of any type. Let xgxi---x; be such a t-path. So xg and x; are in Ay
and are not bottlenecks of type 1, and no z;z;y1 is a bottleneck of type 2 or 3.
Since gz is not a bottleneck of type 3, there are two possibilities: =1 € A;_1 or
there is some i € {1,...,t — 1} such that x; € A;4q and z;41 € A;. In the first
case, since xg is not a bottleneck of type 1, there are at most three choices for x
and at most (d — 1)!~! choices for the remainder of the path. In the second case,
there are t — 1 choices for ¢, there are at most three choices for x;41 given x; since
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F1a. 1. A schematic for the Hamming-type circular construction Go for t =3 and d = 4.

Z;T;+1 is not a bottleneck of type 2, and there are at most (d — 1)“1 choices for the
rest of the path. Together with the at most d* choices for xg, we combine the case
considerations to conclude that the total number of choices for the path xgxy - - - x; is
at most d'(3 +3(t —1))(d — 1)t < 3td**~1L.

Overall, the number of pairs of vertices from Ule A; that are within distance ¢ of
one another is at most (2+11¢)d?'~1. As x was arbitrary, this implies that the number
of edges spanning the neighborhood of any vertex in G* is at most (2 + 11¢)d**~1. An
application of Theorem 4 to G* with f = d/(2 + 11t) completes the proof. 0

3. Circular constructions. In this section, we describe some constructions
based on a natural “circular unfolding” of the Hamming graph, or of the De Bruijn
graph. We first give basic versions that have weaker girth properties but provide
intuition, and we develop these further later.

PROPOSITION 7. For all positive t and all even d, there is a graph G of mazimum
degree d such that x(G?) > dt/2t. Moreover, G can be chosen to have girth 4 if
t ¢ {1,3} as well as bipartite if t is even.

Proof. Of course, the ¢-dimensional De Bruijn graph on d/2 symbols already
certifies the first part of the statement, but we give two other constructions that
satisfy the second part of the statement. Thus hereafter we can assume t > 2. For
both constructions, the vertex set is V = U U®), where each U is a copy of [d/2]",
the set of ordered ¢-tuples of symbols from [d/2] = {1,...,d/2}.

A De Bruijn-type construction. We define G; = (V, Ey) as follows. For all i €

{0,...,t — 1}, we join an element (xéi), . ,:r:g?l) of U™ and an element
(xé”l modt) - plitlmed )y ¢ r(i+1mod t) 1y ap edge if the latter is a left cyclic

shift of the former, ie., if 20Tt ™48 = ;)

: j = Tin
gcizjll mod ) are arbitrary from [d/2]).

A Hamming-type construction. We define Go = (V, E3) as follows. For all i €

for all j € {0,...,t — 2} (and ",

{0,...,t — 1}, we join an element (x((f), o ,xi?l) of U® and an element
(x(iJrl mod t) x(iJrl mod t)) of U(H_l mod t) b dee if the t-tupl 1 B
o N v an edge if the t-tuples agree on all sym:

bols except possibly at coordinate , i.e., if x§i+1 med £) :x§i) forall j€{0,...,t — 1}\{i}

(and 27, 20T ™09 are arbitrary from [d/2]).
See Figure 1 for a schematic of Gs.
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In both constructions, the maximum degree into U1 mod®) from a vertex in U
is d/2 and the same is true from U+ med?) into U®) so both constructions have
maximum degree d overall. In both constructions, for any pair of elements in U(®)
there is a path between them of length at most ¢, one that passes through every U,
either by a sequence of t cyclic shifts or a sequence of ¢t one-symbol changes. There-
fore, the induced subgraphs G1*[U(®)] and Go!'[U®] are both cliques, implying that
x(G1) > |[UO| = d*/2¢ and similarly for G5. As these constructions are composed
of bipartite graphs connected in sequence around a cycle of length ¢, G; and G, are
of girth 4 if t # 3 and are bipartite if ¢ is even. This ends the proof. |

To proceed further with this circular construction to obtain one with higher girth,
we certainly have to handle the (many) cycles of length 4 that span only two consec-
utive parts U and UG+ med ) We do this essentially by substituting a subsegment
U, glittmedt) itk mod ) with a sparse bipartite structure having good dis-
tance properties. Some of the most efficient such sparse structures arise from finite
geometries, generalized polygons in particular. We base our substitution operation on
these structures, and therefore find it convenient to encapsulate the properties most
relevant to us in the following definition.

We say a balanced bipartite graph H = (V. = AU B, E) with parts A and B,
|A| = |B, is a good conduit (between A and B) with parameters (1, A,~,c) if it has
girth ~, it is regular of degree A, there is a path of length at most 7 between any
a € A and any b € B, and moreover |A| (and so also |B|) is of maximum possible
order ©(AT) such that |A| > cA™.

The following good conduits are useful in our constructions, because of their rel-
atively high girth. The balanced complete bipartite graph Ka a is a good conduit
with parameters (1,A,4,1). Let ¢ be a prime power. The point-line incidence graph
Q, of a symplectic quadrangle with parameters (g, ¢) is a good conduit with parame-
ters (3,¢ + 1,8,1). The point-line incidence graph H, of a split Cayley hexagon with
parameters (g, q) is a good conduit with parameters (5,¢ + 1,12,1). We have inten-
tionally made specific classical choices of generalized polygons here (cf. [10]), partly
because we know they are defined for all prime powers ¢ and partly for symmetry con-
siderations described later. We remark that no generalized octagon with parameters
(¢, q) exists and no generalized n-gons for any other even value of n exist [4].

We are now prepared to present the main construction of the section. This is a
generalization of Ga. (It is possible to generalize G7 in a similar way.)

THEOREM 8. Let t = Z?:_()l T; for some positive odd integers T; and A > 2. Let

d be even. Suppose that for every i there is a good conduit H; with parameters
(1i,d/2,7i,¢i). Then there is a graph G of maximum degree d such that x(G') >
(H?:_(Jl ci)dt /2t and its girth satisfies girth(G) > min{\,8, min;v;}. Moreover, G is
bipartite if and only if t is even.

After the proof, we show how to modify the construction in certain cases to
mimic the inclusion of good conduits with the 7 parameter equal to 2 (note that good
conduits with even 7 are precluded from the definition), to increase the girth of G, or
to improve the bound on x(G*).

Proof of Theorem 8. For every i, let H; = (V; = A; U Bi?Ei) be the assumed
good conduit with parameters (7;,d/2,7i,¢;). Write A; = {aj,...,a;,} and B; =
{b1,...,b;,}. By the definition of H;, n; > ¢;d™ /27,

We define G = (V, E) as follows. The vertex set is V = UM U where each U®)
is a copy of H;‘:—Ol [n;], the set of ordered A-tuples whose jth coordinate is a symbol
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from [n;] = {1,...,n;}. Foralli € {0,..., A — 1}, we join an element (a:éi), .. ,xf\izl)
of U™ and an element (;16((fJrl mod )‘), e ,x(;jll meod A)) of U(it1 med A) by an edge only if
the A-tuples agree on all symbols except possibly at coordinate ¢, in which case we use
H; and its ordering as a template for adjacency. More precisely, join (xg), e ,ngzl)
and (z§ 1N L 2{F MY by an edge of G if ol = 2NN for all j e
{0,..., X =1} \ {i} and there is an edge in H; joining a’ and bi?i“ mod 5. Clearly

G is bipartite if and only if A is even, which holds if and énly if  is even.

Since H; has maximum degree d/2, the degree into U (i+1mod A) from a vertex in
U is at most d/2 (with respect to the edges added between U® and U1 mod V)
and the same is true from U+ m0d ) into U(®) | 50 overall G has maximum degree d.
Between any pair of elements in U(®, there is a path of length at most t = Z?:_Ol Ty
passing through every U®, which changes the symbol at coordinate i via a path
of length at most 7; in the subgraph induced by U® and U+l med ) Tt follows
that the induced subgraph G*[U©] is a clique, and so x(G) > [U©] = [[} ") n; >
[Ty cid™ /27 = ([T ei)d! /2",

All that remains is to establish the girth of G. For the statement we essentially
only need to consider cycles of length 7 or less, whose winding number with respect
to the cycle UOUM ... uMU©) is 0. Such cycles are of even length, so we only need
to consider lengths 4 and 6. We do not need to consider the cycles that only go back
and forth between U and U+ med ) (only along the edges added between U®)
and U+ med A) “for such cycles are accounted for by the min, ; term. So, for cycles
of length 4 of winding number 0, without loss of generality we need only consider one
that proceeds in order through U©), UM U2 and then back through UM to U©,
written as u(@uMuPyMy© By construction, the A-tuples u(®, v, v share
all but their zeroth coordinate symbols and the tuples u®, v, v share all but
their first coordinate; however, this implies that u¥) and v(» are the same tuple in
UM a contradiction. For cycles of length 6 that, say, proceed in order through U
UMD, U UG and back, we argue in a similar fashion as for length 4 to obtain a
contradiction. The remaining case (for winding number 0) is a cycle of length 6 that
is, without loss of generality, of the form u(9 4y My (M40 By construction,
the tuples u(®, v w) share all but their zeroth coordinate symbols and the tuples
v@ v @) share all but their first coordinate as do u®, vV, v(1); however, this
implies that (") and w(?) are the same tuple in U, a contradiction. This concludes
our determination of the girth of G.

We remark that cycles of length 8 may well occur, for instance when the same
good conduit H is used two times consecutively. In particular, supposing H is used
from U to UM to UP and a1bsas and byasbg are two 2-paths in H, then (4,1,...)1),
(4,2,..)% (4,3,..00,(5,3,..)© (6,3,..)1,(6,2,..)3,(6,1,...)1, (5,1,...)0),
(4,1,...)™M represents an 8-cycle in the construction. O

In two of the small values for ¢ (namely, 4 or 7), we cannot apply the construction
of Theorem 8 without a modification. The intuition is to include another sparse
structure with good distance properties, that is, the point-line incidence graph P,
of the projective plane PG(2,q), for ¢ a prime power. This is a bipartite graph
(V.= AUB, E) of girth 6, that is regular of degree ¢+ 1, has a 2-path between a and
a’ for any a,a’ € A (and similarly a 2-path between b and b for any b,b’ € B), and
has |[A| = |B| = ¢* + ¢ + 1. The graph Py_; certifies x2(d) > d? if d — 1 is a prime
power; moreover, since the gap between two successive primes p and p’ is o(p) [5], the
inequality holds for all d as d — oo.
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F1G. 2. An tllustration of P2 together with its mirror.

The graph P, has properties similar to what we might require for a good conduit
having parameter 7 = 2, except that it connects vertices in the same part. One
solution to this parity issue is to “unfold a mirror of P;,” that is, add a disjoint copy
of one of its parts with the same adjacencies as the original, so that the conduit is
between the vertices of two copies of the same part. See Figure 2 for an illustration
of Ps together with its mirror, denoted by —Ps.

Directly, however, this creates cycles of length 4 (from vertices of degree 2), so
we need to segregate the embedding of P, and its mirror (i.e., P, with A and B
switched). More precisely, suppose that we want to use P, as a template for the edges
between U and UM (as in the construction of G in Theorem 8). For this, we change
symbols (chosen from [¢? 4+ g+ 1]) at the zeroth coordinate in one step according to P,
between U and UM, and change the zeroth coordinate in a second step according
to the mirror of P, but later in the cycle, say by adding a new part U'©O) after U
in the cycle and adding edges between U®) and U’(?) according to the mirror of Py
Although this adds one more part to the cycle of Us, it avoids cycles in G of length
4 and appropriately mimics the distance properties of a good conduit with parameter
7 = 2. We can also interleave when we want to embed P, and its mirror for two or
three coordinates.

In all, the girth we obtain for this modification of Theorem 8 satisfies girth(G) >
min{\ + ¢, 6, min; v; }, where ¢ = |{i|r; = 2}| > 1, provided that A > 3 if v = 1.

For t > 6, it is possible to improve on the construction in Theorem 8 either in
terms of the girth of G or x(G') by applying a similar modification as above but
instead to good conduits. In particular, we can “unfold” Q, or H, into three copies
(one of which is mirrored), or possibly five copies (two of which are mirrored) in the
case of H,, and distribute the embeddings of these copies around the cycle, doing this
for all coordinates. By unfolding into an odd number (< 7) of parts, the distance
properties of the construction are unhindered. If these embeddings are interleaved
so that no two embeddings of the same coordinate are at distance at most 1 in the
cycle UOUM ...uMUO) | then the same analysis for girth at the end of the proof
of Theorem 8 applies. If they are interleaved so that no two embeddings of the same
coordinate are at distance 0, then cycles of length 4 do not occur but cycles of length
6 may well occur.

Furthermore, when all of the coordinates are unfolded into the same number
(three or five) of copies and these are distributed evenly so that each segment of
length A contains exactly one embedding for each coordinate, and the good conduits
satisfy a symmetry condition (self-duality) that we describe formally in section 4, then
UQuU®™UyUBCY Y- induces a clique in the tth power, increasing the bound on
x(G?) (by a factor 3 or 5).
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The above modifications do not affect the parity of the main cycle, so we still
have that the construction is bipartite if and only if ¢ is even. We shall describe a few
further special improvements upon Theorem 8 within the proof of Theorem 3.

4. Cliques in G* from good conduits. Good conduits of parameters (7, A, v, ¢)
are themselves very nearly cliques in the 7th power and indeed there are two simple
ways to modify them to create such cliques. This yields better bounds for xj(d) in a
few situations when t € {3,5}.

The first idea is to contract a perfect matching, thereby merging the parts.

PROPOSITION 9. Let H be a good conduit of parameters (1,A,v,c) and let A =
{a1,...,an}, B={b1,...,b,} be a matching ordering of H. The graph uw(H), which
we call the matching contraction of H, formed from H by contracting every edge a;b;,
1 € {1,...,n}, and ignoring any duplicate edges satisfies the following properties:
w(H) has mazimum degree 2A — 2, girth at least v/2, n(> c¢AT) vertices, and between
every two vertices in w(H) there is a path of length at most T.

Proof. The statements about the maximum degree and number of vertices are
trivial to check. That every pair of vertices is joined by a 7-path follows from the
distance properties of H as a good conduit. Let {v1,...,v,} be an ordering of the
vertices such that v; corresponds to the contracted edge a;b; for every i € {1,...,n}.
For the girth, suppose C' = v;,v;, - - - v;,0;, is a cycle of length ¢ in p(H). Then, for
every j € {1,..., £}, either a;;b;, .4, O Qi ..q,bi; is an edge of H. Moreover,
every a;,b;; is an edge of H, so by also including at most £ such edges, we obtain a
cycle of length at most 2¢ in H. So girth(H) < 2girth(u(H)), as required. O

It is worth noting that the conclusion of the last proposition gives a lower bound
on the output girth (of v/2); however, it is conceivable that with a suitable matching
ordering the girth could be made higher (namely, up to 3v/4 — 1), but we have not
yet pursued this further.

The second idea is to connect good conduits with parameter 7 end to end around
a cycle of length 7. In order to do so, we need that the input good conduit is
symmetric. More precisely, we say a good conduit between A and B is self-dual if
there is a bijection o : A — B such that the mapping for which every element a € A
is mapped to o(a) and every element b € B is mapped to o~1(b) is an automorphism
of the graph. In other words, a self-dual good conduit has an embedding such that it
is isomorphic to its mirror. Note that this corresponds to the notion of self-duality in
generalized polygons, so every self-dual generalized polygon gives rise to a self-dual
good conduit. It is known that Qg, resp., Hy, is self-dual when ¢ is a power of 2,
resp., of 3; cf. [10].

PROPOSITION 10. Let H be a self-dual good conduit of parameters (1,A,~,c) for
7 > 3. The graph ¢(H), which we call an H-cycle of length 7, formed by connecting T
copies of H end to end in a cycle with vertices identified according to the self-duality
bijection for H, is reqular of degree 2\, has girth min{7,4}, has Tn(> 7cA") vertices,
and between every two vertices in (H) there is a path of length at most T.

Proof. The statements about the maximum degree and number of vertices are
trivial to check. There are cycles of length 4 spanning three parts due to the symmetry
of H. There are no triangles unless 7 = 3. By the self-duality of H, there is a 7-path
between every pair of vertices in the same part by traversing through exactly one full
revolution of the cycle. Moreover, by the parity of 7 together with the self-duality
of H, any two vertices in different parts are joined by a 7-path possibly by changing
directions several times along the cycle. ad
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TABLE 2
A list of constructions used in the proof of Theorem 3.

Bound Construction that certifies the bound

x%( ) > d? Py, with ¢’ the largest prime power at most d 4 1

Xﬁ (d) > 3d3/23 A Q-cycle of length 3, with ¢’ the largest power of 2 at most d/2 —1

x3(d) = d3/23 A matching contraction of Qg

xi(d) 2 2d*/2* (Pg®, =Py, Pq', —Py*)

xa(d) 2 d*/24 A “noncircular” (Pg%, Py!) (see proof)

x5(d) 2 5d° /25 An Hg-cycle of length 5, with ¢/ the largest power of 3 at most d/2—1

x3(d) = d5 /25 A matching contraction of Hq

x&(d) Z (3)dS /26 (94", Qq1), each coordinate unfolded into three copies

Xg(d) z d7/27 (QqO7qu7 _quv _ququ27 Qq07 _qu)

x&(d) = (3)d® /28 (94", Hq?1), each coordinate unfolded into three copies

xt(d) 2 (3)d?/2%, t = | A circular construction with at least three 7;’s chosen from {3,5} such

9ort>11 that they sum to ¢, each coordinate unfolded into three copies

x&2(d) = (5)dt /2t A circular construction composed of two Hy’s, each coordinate un-
folded into five copies

x5(d) z (5)d*/2, t > | A circular construction composed only of H,’s, each coordinate un-

15, 5|¢ folded into five copies

5. Summary and conclusion. Let us tie things together for Theorem 3 before
proposing further possibilities.

Proof of Theorem 3. Table 2 explicitly indicates which construction from sec-
tion 3 or 4 is used in each lower bound for X; (d) listed in Theorem 3. In the table,
we have used the following notation. The largest prime power not exceeding d/2 — 1
is denoted ¢, so that 2¢ + 2 ~ d as d — oco. The inequalities in rows involving ¢ hold
for all d as d — oo since the gap between two successive primes p and p’ is o(p) [5].
The mirror of a graph G is denoted by —G. We have written (Go®°,...,Gx_1"*"1)
for the circular construction as described in section 3, with the adjacencies between
U@ and UG+ mod A defined according to G; along the a;th coordinate. Bracketed
factors 3 and 5 in the left-hand column require self-duality and are not necessarily
valid for all values of d as d — oo, as we describe below.

In the row for t = 4 and girth 6 we use a subgraph of the circular construction.
It has vertex set U U UM UU®) | with the edges between U and UM embedded
according to P, along the zeroth coordinate (as in the circular construction), and
edges between U and U®) embedded according to P, along the first coordinate.
There are no edges between U and U®). By the same arguments used for the
circular construction, we conclude that the girth of the graph is 6. Moreover, the
distance properties of P, ensure that U (1) induces a clique in the fourth power.

In the row for ¢ = 4 and girth 4, we have an additional factor 2, which is justified
with the observation that U(® UU®) induces a clique in the fourth power. This holds
similarly for U© UU® in the row for t = 7.

For the third-to-last row, it is easily checked that, if ¢ = 9 or ¢ > 11, then ¢t is
expressible as a sum of at least three terms in {3, 5}, so that the circular construction
as per Theorem 8 need only be composed using Q,’s and H,’s. Then, as described
at the end of section 3, we can unfold each coordinate into three copies, distributed
evenly around the cycle, to achieve a girth 8 construction. Optionally, if we use Q,,
and Hg,, where g2 is a power of 2 and g3 is a power of 3 , then the use of self-dual
embeddings ensures that we can freely change direction around the main cycle so that
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U@ uU™UU®Y induces a clique in the tth power. By choosing g2 and g3 of similar
magnitude (say, by using arbitrarily fine rational approximations of log, 3), we see
that the factor 3 improvement in the inequality holds for infinitely many d. This also
explains the girth 6 constructions for t = 6 and ¢t = 8. A similar argument, where we
instead unfold each coordinate into five copies, applies for the last two rows. ad

Our work is a first systematic attempt at the problem of Alon and Mohar, al-
though their conjecture—which says for every positive ¢ there is a critical girth g; such
that x}, (d) = ©(d") and x{, ;(d) = ©(d"/log d)—remains wide open. Because of the
reliance upon incidence structures, it seems unlikely that our methods or similar ones
could produce constructions of girth higher than 12 or 16. We suspect though that
g: exists and is linear in t. Irrespective of the existence or value of g;, we conjecture
the following in relation to Theorem 1.

CONJECTURE 11. The largest possible value of the chromatic number x(G?) of
G?t, taken over all graphs G of mazimum degree at most d containing as a subgraph
no cycle of length 2t + 2 is ©(d!/logd) as d — oo.

In [7], an edge-coloring version of Alon and Mohar’s problem was proposed and
studied. This is related to a well-known conjecture of Erdos and Nesetfil, and to
frequency allocation problems in ad hoc wireless networks. Techniques in the present
paper carry over similarly, but we defer this to follow-up work.

Determination of the extremal value of x4(d) up to a 1+ o(1) factor as d — oo is
very enticing and is closely related to the degree diameter problem.

Another interesting problem is what is the smallest possible value of the stability
number a(G?) of GY, taken over all graphs G' of maximum degree at most d and girth
at least g7 To our knowledge, this natural extremal problem has not been extensively
studied thus far.

Acknowledgment. We are very grateful to the referees for their helpful com-
ments and suggestions. We particularly thank one of the referees for pointing out
Proposition 2.

REFERENCES

[1] N. ALoN, M. KRIVELEVICH, AND B. Subakov, Coloring graphs with sparse neighborhoods, J.
Combin. Theory Ser. B, 77 (1999), pp. 73-82.
[2] N. ALON AND B. MOHAR, The chromatic number of graph powers, Combin. Probab. Comput.,
11 (2002), pp. 1-10.
[3] P. ERDGS AND T. GALLAI, On mazimal paths and circuits of graphs, Acta Math. Acad. Sci.
Hungar, 10 (1959), pp. 337-356.
[4] W. FEIT AND G. HIGMAN, The nonezistence of certain generalized polygons, J. Algebra, 1
(1964), pp. 114-131.
[5] A. E. INGHAM, On the difference between consecutive primes, Quart. J. Math., 8 (1937),
pp. 255-266.
[6] A. JOHANSSON, Asymptotic Choice Number for Triangle-Free Graphs, Technical report 91-5,
DIMACS, Rutgers, NJ, 1996.
[7] T. KAISER AND R. J. KANG, The distance-t chromatic index of graphs, Combin. Probab. Com-
put., 23 (2014), pp. 90-101.
[8] M. MILLER AND J. SIRAN, Moore graphs and beyond: A survey of the degree/diameter problem,
Electron. J. Combin., 20 (2013), DS14.
[9] M. MoLLoY AND B. REED, Graph Colouring and the Probabilistic Method, Algorithms Combin.
23, Springer-Verlag, Berlin, 2002.
[10] S. E. PAYNE AND J. A. THAS, Finite Generalized Quadrangles, Res. Notes Math. 110, Pitman,
Boston, MA, 1984.
[11] V. G. VIZING, Some unsolved problems in graph theory, Uspekhi Mat. Nauk, 23 (1968), pp. 117—
134.



	Introduction
	An upper bound for graphs without certain cycles
	Circular constructions
	Cliques in Gt from good conduits
	Summary and conclusion
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


