
Master Parisien de Recherche en Informatique 2-29-1

I/III
J.-S. Sereni Matchings in Graphs 11/2009

1 Introduction

Matching theory is a core topic of both applied and theoretical graph theory, which is
full of elegant and deep results. In 1965, Edmonds [1] gave the first efficient algorithm
to find maximum matchings in graphs. His result is a milestone of algorithmic graph
theory, providing the first efficient algorithm for a graph theoretical problem that
could not be formulated as an integrality-preserving linear program.

Our first lecture focus on Edmonds’s algorithm, from which we derive the Tutte-
Berge Formula. An independent proof of this formula will be given in the next lecture.

In the following section, we explain the notation used, we give a proposition
characterising maximum matchings of a given graph and make a remark which will
prove to be useful.

2 Notation, a Proposition and a Remark

Given two sets X and Y , the symmetric difference of X and Y is the set

X∆Y := (X \ Y) ∪ (Y \X) .

Let G be a graph. The vertex set of G is V (G) and its edge-set is E(G). An odd
component of G is a connected component with an odd number of vertices. An even
component is defined analogously. If X ⊆ V (G), then G[X] is the subgraph of G
induced by X, and G−X := G[V (G) \X]. Similarly, if M ⊆ E(G), we define G[M]
to be the subgraph of G spanned by the edges in M , and G −M := G[E(G) \M].
Two edges of G are adjacent if they share a common vertex. A matching of G is a
set of edges no two of which are adjacent. Thus, the size of a matching is at most
b|V (G)|/2c.

A matching M is maximum if every matching M ′ of G satisfies |M ′| ≤ |M |, and
it is perfect if |M | = |V (G)|/2 (in other words, if every vertex of G is incident to an
edge of M).

Given a matching M of G, a vertex v ∈ V (G) is M-matched if v is incident to
an edge in M . A vertex that is not M -matched is M-unmatched. A path P :=
v1, v2, . . . , vk is M-alternating if its edges alternately belong to M , i.e. vi−1vi ∈M ⇔
vivi+1 /∈M for i ∈ {2, . . . , k−1}. The path P is M-augmenting if it is M -alternating
and both its endvertices are M -unmatched, i.e.

I-1

• v1 and vk are M -unmatched; and

• for every i ∈ {2, . . . , k − 2}, the edge vivi+1 belongs to M .

In these notations, we may drop the “M -” when there is no risk of confusion.
The following proposition is the main tool used in finding maximum matchings in

bipartite graphs, and it is the starting point for the general setting too.

Proposition 1. Let G be a graph and M a maximum matching of G. Then, M is
maximum if and only if G has no M-augmenting path.

Proof. First, if G has an M -augmenting path P , then set M ′ := M∆E(P). Note that
M ′ is a matching of G with |M ′| > |M |, and hence M is not a maximum matching
of G.

Conversely, assume that M is not a maximum matching of G. Let M ′ be a
maximum matching of G, thus |M ′| > |M |. We consider the subgraph H of G
spanned by the edges in M∆M ′. Every vertex of H has degree 1 or 2; thus each
connected component of H is either a path of a cycle. Moreover, every cycle of H is
even (why?). Thus, the connected component of H fall into three categories: even
cycle, path of even length, path of odd length. Since |M ′| > |M |, there is a connected
component C of H containing more edges in M ′ than in M . Thus, C is neither an
even cycle, nor a path of even length. Consequently, C is a path P := v1, v2, . . . , v2k
of odd length. Further, its end-vertices are M -unmatched (by the definition of C),
and for every i ∈ {1, . . . , k − 1}, the edge v2iv2i+1 belongs to M . Hence, P is an
M -augmenting path.

We end this section with the following remark, which gives an upper bound on
the size of a maximum matching of a graph. Let M be a matching of a graph G,
and let U ⊆ V (G). Then, M induces a matching M ′ of G − U . Let o(G − U) be
the number of odd components of G − U . Each odd component of G − U contains
an M ′-unmatched vertex. Such a vertex is M -matched only if it is matched in M
to a vertex of U . Thus, at least o(G − U) − |U | vertices of G are M -unmatched.
Consequently,

|M | ≤ 1

2
(|V (G)| − o(G− U) + |U |) .

Therefore, the maximum size of a matching of G is at most

min
U⊆V

1

2
· (|V (G)|+ |U | − o(G− U)) .

As we shall see, there is actually equality between these two quantities. This equality
is known as the “Tutte-Berge Formula”.

I-2

v1 v2 v3 v4 v5 v6 v7

v8

v9

v10
v11

S B

Figure 1: A flower F , composed of a stem S and a blossom B. Bold edges correspond
to those in M .

3 Finding Augmenting Paths

We want to design an algorithm to find a maximum matching of a graph. In view of
Proposition 1, a natural approach consists in starting from any matching and looking
for augmenting paths.

Let M be a matching of a graph G, for instance a single edge. We may assume
that G is connected. Let X be the set of M -unmatched vertices, and assume that
X 6= ∅. We want to find an M -alternating path between two vertices of X, so that
we can augment M along this path, or conclude that M is maximum if there is no
such path. For every M -matched vertex v ∈ V (G), we let v∗ be the neighbour of v
in G[M].

While efficiently searching for augmenting paths in bipartite graphs is straight-
forward, the situation seems more difficult in general graphs. Let us analyse what
can go wrong. Let x, x′ ∈ X and suppose that we have found an M -alternating
path P := xw1w

∗
1w2w

∗
2 . . . wkw

∗
kx
′ between x and x′. If G were bipartite, P would be

M -augmenting.
However, this may not be the case anymore. The reason is that P can contain an

odd cycle. For instance, we may have x = x′, which prevents us from augmenting M
by alternating along P .

Formally, a flower F is composed of an alternating path S := v1, . . . , v2k+1 of
even length with v1 ∈ X, and an odd cycle B := v2k+1, . . . , v2k′+1, v2k+1 such that
V (S)∩V (B) = {v2k+1}, and v2iv2i+1 ∈M for every i ∈ {k+ 1, k′}. The path S is the
stem of F , and B is the blossom of F . The vertex v2k+1 is the root of the blossom B.
See Figure 1.

Note that, by the definition, the two edges of B incident with v2k+1 do not belong
to M . Moreover, the stem is allowed to be a path of length 0 (just take k = 0 in the
definition), in which case the flower is reduced to its blossom.

The relevance of flowers follows from the next lemma.

Lemma 2. Let G be a graph with a matching M . Define X to be the set of M-
unmatched vertices. Let v1, vk ∈ X and let P := v1, . . . , vk be a shortest M-alternating

I-3

path (possibly with repeated vertices and/or edges). Then, either P is an M-augmenting
path, or the vertices v0, v1, . . . , vs yield a flower for some s < k.

Proof. Exercise! Hint: “If P has no repeated vertices, then. . . Otherwise, let s be the
largest index such that v1, . . . , vs−1 are pairwise distinct. Let i ∈ {1, . . . , s− 1} such
that vi = vs. First, realise that s must be even. Next, prove that i is odd by showing
that if i is even, then P can be shortened.”

We make a straightforward but useful remark. Let M be a matching and F a
flower for M , with stem S and blossom B. The path S is M -alternating. Thus,
setting M ′ := M∆E(P), we obtain a matching of size |M |, for which we have a
flower reduced to its blossom. Moreover, the root of the blossom is M ′-unmatched.
This is why, in our algorithm, we may always assume that the flowers are reduced to
their blossom, which is rooted at an unmatched vertex. This will be used implicitly
in the sequel.

Thus, the question is: “what shall we do with a blossom rooted in X?”. We shrink
it! Formally, if B is a blossom of G rooted at x ∈ X, we define G/B to be the graph
obtained by contracting B into a single vertex (and removing loops and parallel edges
that may arise). That is, G/B is the graph obtained from G by removing the vertices
in V (B), and adding a new vertex b linked to every v ∈ V (G) \V (B) that is adjacent
in G to a vertex of B.

We define M/B to be the set of edges of G/B corresponding to the edges of G
in M \ E(B). Thus, M/B is a matching of G/B. Moreover, observe that |M/B| =

|M | − |V (B)|−1
2

.
More generally, every matching N of G/B gives rise to a matching of G of size

|N |+ |V (B)|−1
2

: first, let M be the set of edges of G corresponding to those in N . Note
that most one vertex v of B is M -matched. Therefore, we can add to M the (unique)
maximum matching of B in which v is uncovered. Each time we use the expression
“to unshrink a blossom”, we extend the matching we have in this way.

As we see below, it turns out that M/B is a maximum matching of G/B if and
only if M is a maximum matching of G. This is the crux of the algorithm.

Theorem 3. Let M be a matching of graph G and let B be a blossom rooted in X.
Then, M is a maximum matching of G if and only if M/B is a maximum matching
of G/B.

Proof. Let b be the vertex of G/B obtained by the contraction of B. Recall that b is
M/B-unmatched.

Suppose first that M/B is not a maximum matching of G/B, and let N be a
matching of G/B with |N | > |M/B|. As we mentioned above, N yields a matching

of G of size |N |+ |V (B)|−1
2

> |M/B|+ |V (B)|−1
2

= |M |. Therefore, M is not a maximum
matching of G.

Conversely, suppose that M is not a maximum matching of G, and let P :=
v1, v2 . . . , v2k be an M -augmenting path in G. If P is disjoint from B, then B yields an

I-4

M/B-augmenting path in G/B, and so M/B is not a maximum matching of G/B. So
we suppose now that V (P)∩V (B) 6= ∅. One of v1 and v2k is distinct from b, say v1 6= b.
Let i0 be the smallest index i such that vi ∈ V (B). We set Q := v1, v2, . . . , vi0−1, b.
Then, Q is an M/B-augmenting path of G/B, as wanted.

Thus, whenever we find a flower, we first reduce it to a blossom rooted in X,
and then we shrink B and use recursion to find a maximum matching M ′ of G/B.
If |M ′| = |M/B|, then Theorem 3 implies that M is maximum in G. Otherwise,
we expand back M ′ into a matching M ′′ of G as in the previous proof. Hence,
|M ′′| > |M |. Note that M ′ is not necessarily a maximum matching of G! But we
could increase the size of the original matching of G. With these tools at hand, we
can give a formal description of the algorithm.

4 The Algorithm

The global idea is to build alternating trees from each unmatched vertex, which will
also us to efficiently find either an augmenting path—in which case we augment the
matching and start again—or a blossom—in which case we shrink it and proceed
recursively. The general picture of the algorithm is as follows.

Start with any matching M of G, e.g. M = ∅ or M is a single edge.
Set X to be the set of M -unmatched vertices.
while G contains an M -alternating path from X to X

if P is an M -augmenting path, then set M := M∆E(P) and update X.
else P contains a blossom B.

Recursively find a maximum matching M ′ of M/B.
if |M ′| = |M/B| then return M .
else unshrink M ′ to obtain a matching of G of size greater than |M |.

Update X.
endwhile

The correctness of this algorithm follows directly from Theorem 3 and Lemma 2.
Let us see how to find an alternating path between vertices of X (which will be

either an augmenting path or a flower), if any. Let G be a graph, M a matching of
G and X the set of M -unmatched vertices. We start by labelling all the vertices in
X by even. The other vertices are unlabelled. For each even vertex u, we record
its unmatched parent r[u]. The table r is initialised as r[x] := x for every x ∈ X,
the other values being undefined. All each step, the algorithm ensures the following
invariant:

• if v is even, then there is an alternating path of even length (possibly 0) from
v to r[v] ∈ X; and

I-5

• if v is odd, then there is an alternating path of odd length between v and
r[v] ∈ X.

The algorithm processes all the even vertices as follows. Let u be an even vertex.
While there is an unmarked edge uw adjacent to u, mark uw and apply the following.

If w is unlabelled, then label it odd. Further, since w is unlabelled, we know
that w /∈ X and hence w∗ exists. We label w∗ by even. We set r[w] := r[w∗] :=
r[u].

If w is even, then we consider two cases according to whether r[w] equals r[u].
If they belong to different trees, i.e. r[w] 6= r[u], then we have found an M -
augmenting path: go from r[u] to u in the tree emanating from r[u], then
follow the edge uw and go from w to r[w] in the tree emanating from r[w] (see
Figure 3). Otherwise, i.e. r[w] = r[u], we have found a flower (see Figure 4).
We reduce it to its blossom B, which is rooted at an even vertex.

If none of the above applies to any edge incident to an even vertex, then the
algorithm concludes that the current matching is maximum in the current graph.

Let us prove that this is correct, and next compute the overall running time.
Suppose that none of the cases above applies any more for any even vertex. We
want to show that the obtained matching M ′ is maximum in the current graph G′.
To see this, first note that there are no edges between even vertices, and no edges
between an even vertex and an unlabelled vertex. Moreover, every unlabelled
vertex is M ′-matched to another unlabelled vertex. Now, let U be the set of odd
vertices. Each even vertex itself is an odd component of G′−U . So, o(G′−U) = |W |,
where W is the set of even vertices. Moreover, |M ′| = |U |+ 1

2
(|V (G′)| − |U | − |W |),

since every unlabelled vertex is M ′-matched and every odd vertex is M ′-matched
to an even vertex. Therefore,

|M ′| = 1

2
(|V (G′) + |U | − |W |) =

1

2
(|V (G′)|+ |U | − o(G′ − U)) ,

so M ′ is a maximum matching of G′ by the remark at the end of Section 2.
The running time of the algorithm is O (|E(G)| · |V (G)|2). Indeed, updating X,

finding an alternating path (breadth-first search) and shrinking a blossom can all be
done in O(|E(G)|). After at most O(|V (G)|) shrinkings, either the algorithm ends,
or the size of the original matching M is increased. Since |M | can be increased at
most O(|V (G)|) times, the conclusion follows.

The fastest known algorithm [2] to compute a maximum matching in general
graphs runs in time O

(
|V (G)|1/2 · |E(G)|

)
.

A careful analysis of the output algorithm allows us to obtain a theorem, known
as the Tutte-Berge formula. This will be dealt with in the next lecture.

I-6

x
even

odd

even

odd

even

Figure 2: An alternating tree emanating from an unmatched vertex x. Bold edges
are those in M , and even vertices are white while odd vertices are black.

r[u] ∈ X r[w] ∈ X
even

odd

even

odd

even

u

w

Figure 3: The squiggly edge is the edge uw being processed. Both u and w are even,
and r[u] 6= r[w]. Therefore, we have found an M -augmenting path between r[u] and
r[w].

r[u] = r[w] ∈ X
even

odd

even

odd

even

u

w

Figure 4: The squiggly edge is the edge uv being processed. Both u and w are even,
and r[u] = r[w]. Therefore, we have found a flower F . Here, the flower is reduced to
its blossom (rooted at r[u]), but the F could have a stem (how?). Then, the algorithm
first reduces F to its blossom and then shrink it.

I-7

References

[1] J. Edmonds. Paths, trees, and flowers. Canad. J. Math., 17:449–467, 1965.

[2] P. A. Peterson and M. C. Loui. The general maximum matching algorithm of
Micali and Vazirani. Algorithmica, 3(4):511–533, 1988.

I-8

