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We start by deriving the Tutte-Berge Formula from the analysis of Edmonds’s
algorithm we did in the previous lecture. We define ν(G) to be the size of a maximum
matching of the graph G.

Fix a graph G. We want to find a set U ⊆ V (G) such that

ν(G) ≤ 1

2
(|V (G)|+ |U | − o(G− U)) ,

where o(G− U) is the number of odd components of G− U . Let M be a maximum
matching of G given by the algorithm. The last step of the algorithm is of two kinds:
either the algorithm did not find any M -alternating path in G, or the algorithm
found a blossom B and determined that the maximum size of a matching of G/B
is |M/B|, so that it has returned M as a maximum matching of G. In the first
case, the vertices of G are labelled and the procedure on page 6 of lecture I cannot
label vertices anymore. Thus, as we proved, taking for U the set of odd vertices
yields the conclusion. In the second case, we have seen that the formula holds for
G/B, with U being the set of odd vertices, but we still have to find a suitable set
U for G. Notice that when B is contracted, the vertex b arose from the contraction
is M/B-unmatched, and hence even. As a result, U can be viewed as a subset of
V (G). Moreover o(G− U) = o(G/B − U). Indeed, the unique connected component
that changes is the component C of G/B − U containing b. As we noted last time,
C = {b}, since b is even. In G − U , this component becomes B, and thus is still

odd. Now, notice that |V (G)| = |V (G/B)|+ |V (B)| − 1 and |M | = |M/B|+ |V (B)|−1
2

.
Therefore,

|M | = 1

2
(|V (G/B)|+ |U | − o(G/B − U)) +

|V (B)| − 1

2

=
1

2
(|V (G)|+ |U | − o(G/B − U))

=
1

2
(|V (G)|+ |U | − o(G− U)) ,

as wanted. We have proved the following Tutte-Berge Formula.

Theorem 1. For every graph G,

ν(G) = min
U⊆V (G)

1

2
(|V |+ |U | − o(G− U)) , (1)

where o(G− U) is the number of connected components of odd order of G− U .
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1 A Different Proof of Theorem 1

Let us see a different (and independent) proof of Theorem 1.

Second Proof of Theorem 1. Let G be a graph. We may assume that G is connected
(why?). We have already seen in the first lecture that

|ν(G)| ≤ min
U⊆V (G)

1

2
(|V (G)|+ |U | − o(G− U)) .

We prove the reverse inequality by induction on |V (G)|, the result holding trivially
if |V (G)| = 1. Assume now that |V (G)| ≥ 2 and the formula holds for graphs on at
most |V (G)| − 1 vertices. We consider two cases.
There is a vertex v ∈ V (G) that is matched in every maximum matching of G. Set
G′ := G − v. Then, ν(G′) = ν(G) − 1, for otherwise G would have a maximum
matching not covering v. Let U ′ ⊆ V (G′) such that ν(G′) = 1

2
· (|V (G′)| + |U ′| −

o(G′ − U ′)). Further, set U := U ′ ∪ {v}. Note that o(G − U) = o(G′ − U ′) since
G− U = G′ − U ′. Consequently,

ν(G) =
1

2
· (|V (G′)|+ |U | − 1− o(G− U)) + 1

=
1

2
· (|V (G)|+ |U | − o(G− U)) .

Every vertex of G is unmatched in at least one maximum matching of G. We show
that, in this case, ν(G) = 1

2
· (|V (G)| − 1). This yields the desired conclusion with

U = ∅. Suppose on the contrary that ν(G) < 1
2
· (|V (G)| − 1). For every maximum

matching M , we set

d(M) := min{distG(u, v) : u and v are M -unmatched} ,

where distG is the distance function in G. We choose M such that d(M) is minimised,
and set d := d(M). Note that d > 1, for otherwise M + uv would be a matching
larger than M . Let t be an internal vertex on a shortest uv-path in G. In particular,
t is M -matched. We know that there exists a maximum matching N such that t is
N -unmatched (and hence N 6= M). Choose such a matching N with moreover the
smallest symmetric difference with M .

First, notice that both u and v are N -matched, for otherwise (N, t, u) or (N, t, v)
would contradict our choice of (M,u, v). By our assumptions (and since |M | = |N |),
there exists a vertex x 6= t that is M -matched and N -unmatched (hence x /∈ {u, v}).
Let y ∈ V such that xy ∈ M . Since N is a maximum matching, there exists z ∈
V such that yz ∈ N . Hence, z 6= x. Therefore, N ′ := (N \ {yz}) ∪ {xy} is a
maximum matching of G. Moreover, t is N ′-unmatched and |N ′∆M | < |N∆M |, a
contradiction.
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The preceding proof does not give a way to find a set U achieving (1), but, as we
have seen, Edmonds’s blossom algorithm does. The algorithm also gives us a way to
exhibit a very nice structure of graphs, called the Edmonds-Gallai decomposition [3,
4, 5]. The proof of the next theorem can be obtained by analysing a maximum
matching output by Edmonds’s algorithm, but we omit it. Given a graph G and a
set X ⊆ V (G), we define N(X) to be the vertices that do not belong to X and have
a neigbhour in X. A graph G is factor-critical if for every v ∈ V (G), the graph G− v
has a perfect matching.

Theorem 2. Let G be a graph and set

D(G) := {v ∈ V (G) : ∃ a maximum matching of G in which v is unmatched} ,
A (G) := N(D(G)) ,

C (G) := V (G) \ (D(G) ∪A (G)) .

Then,

1. The set A (G) achieves equality in (1);

2. C (G) is the union of the even components of G−A (G);

3. D(G) is the union of the odd components of G−A (G); and

4. every odd component of G−A (G) is factor-critical.

2 Perfect Matchings

A matching M of a graph G is perfect if |M | = |V (G)|/2, i.e. every vertex of G is
incident to an edge in M . Tutte’s perfect matching theorem is a direct consequence
of Theorem 1.

Theorem 3. A graph G has a perfect matching if and only if G−U has at most |U |
odd components for every U ⊆ V (G).

As an application of Theorem 3, let us derive the celebrated (and useful) Petersen’s
theorem [7], proved in 1891. A graph is cubic if every vertex has degree 3. Given a
graph G, a bridge is an edge the removal of which disconnects G.

Theorem 4. Every cubic bridgeless graph has a perfect matching.

Proof. By Theorem 3, it suffices to show that G−U has at most |U | odd components,
for every U ⊆ V (G). Fix U ⊆ V (G), and let C be the collection of connected
components of V (G). We define e(U,C ) to be the number of edges with exactly one
end-vertex in U . Since G is cubic,

e(U,C ) ≤ 3 · |U | . (2)
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Figure 1: The edges can be partitioned into a 2-factor (in bold) and a perfect match-
ing. The 2-factor is composed of a 5-cycle and a 15-cycle.

On the other hand, every connected component C ∈ C is linked to U by at least two
edges, since G is bridgeless. Now, let C be an odd component. Let e(C) and e(U,C)
be the number of edges with both end-vertices in C and the number of edges with
exactly one end-vertex in C, respectively. Since G is cubic,

3 · |V (C)| = 2 · e(C) + e(U,C) . (3)

Observe that the left-hand side of (3) is odd (since C is an odd component). Con-
sequently, e(U,C) is odd, too. Since e(U,C) ≥ 2, we deduce that e(U,C) ≥ 3.
Therefore, letting E be the set of odd components, we obtain

e(U,C ) ≥ 3 · |E | .

Combining this with (2), we obtain |E | ≤ |U |, as wanted.

We end this section with some remarks. The first one is an exercise: find a cubic
graph without a perfect matching (hence, with bridges!). Can you find one with
exactly one bridge? With exactly two?

The second remark concerns the structure of bridgeless cubic graphs. Let G be
such a graph. Theorem 4 ensures that G has a perfect matching M . Consider G−M :
it is a spanning 2-regular subgraph of G, i.e. a collection of vertex-disjoint cycles such
that each vertex of G belongs to a cycle. A subgraph that is spanning and k-regular
is a k-factor. So, a 1-factor is precisely a perfect matching, and G−M is a 2-factor.
Theorem 4 yields that every cubic bridgeless graph contains a 1-factor and a 2-factor
that are edge-disjoint. See Figure 1.

Let us define the notion of edge-colouring. Given a graph G, a k-edge-colouring
is a function c : E(G) → {1, . . . , k} such that c(e) 6= c(e′) for every two adjacent
edges e and e′ of G. The chromatic index χ′(G) of G is the smallest integer k for
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Figure 2: The Petersen graph has chromatic index 4.

which G has a k-edge-colouring. Thus, a k-edge colouring is a partition of the edges
into k matchings (each colour class, i.e. all the edges of a given colour, is a matching
of G). Note that the chromatic index of a graph G is always at least its maximum
degree ∆(G). A celebrated theorem of Vizing [8, 9] ensures that χ′(G) ≤ ∆(G) + 1
for every graph G. Deciding between the two values is NP -complete, even for cubic
graphs [6]. More can be said for special classes of graphs, e.g. if G is bipartite then
χ′(G) = ∆(G). This is not true for cubic graphs, as shown by the Petersen graph
(see Figure 2). Cubic graphs with chromatic index index 4 are called snarks, because
they are hard to find (often, other properties are required to avoid trivialities). Edge-
colouring of cubic graphs is linked to deep problems such as the 4-Color Theorem.
A vertex colouring of a graph is an assignment of colours to the vertices such that
no two adjacent vertices have the same colour. The 4-Colour Conjecture states that
every planar graph can be vertex-coloured with 4 colours. This conjecture was proved
to be true by Appel and Haken [1, 2] in 1977. A century ago, Tait proved that the
4-Colour Conjecture was true if and only if every planar cubic bridgeless graph is
3-edge-colourable. More about edge-colouring in the exercises!

References

[1] K. Appel and W. Haken. Every planar map is four colorable. I. Discharging.
Illinois J. Math., 21(3):429–490, 1977.

[2] K. Appel, W. Haken, and J. Koch. Every planar map is four colorable. II. Re-
ducibility. Illinois J. Math., 21(3):491–567, 1977.

[3] J. Edmonds. Paths, trees, and flowers. Canad. J. Math., 17:449–467, 1965.

[4] T. Gallai. Kritische Graphen. II. Magyar Tud. Akad. Mat. Kutató Int. Közl.,
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