Master Parisien de Recherche en Informatique 2-29-1

 II/IIIJ.-S. Sereni

Matchings in Graphs
11/2009

We start by deriving the Tutte-Berge Formula from the analysis of Edmonds's algorithm we did in the previous lecture. We define $\nu(G)$ to be the size of a maximum matching of the graph G.

Fix a graph G. We want to find a set $U \subseteq V(G)$ such that

$$
\nu(G) \leq \frac{1}{2}(|V(G)|+|U|-o(G-U))
$$

where $o(G-U)$ is the number of odd components of $G-U$. Let M be a maximum matching of G given by the algorithm. The last step of the algorithm is of two kinds: either the algorithm did not find any M-alternating path in G, or the algorithm found a blossom B and determined that the maximum size of a matching of G / B is $|M / B|$, so that it has returned M as a maximum matching of G. In the first case, the vertices of G are labelled and the procedure on page 6 of lecture I cannot label vertices anymore. Thus, as we proved, taking for U the set of odD vertices yields the conclusion. In the second case, we have seen that the formula holds for G / B, with U being the set of ODD vertices, but we still have to find a suitable set U for G. Notice that when B is contracted, the vertex b arose from the contraction is M / B-unmatched, and hence EVEN. As a result, U can be viewed as a subset of $V(G)$. Moreover $o(G-U)=o(G / B-U)$. Indeed, the unique connected component that changes is the component C of $G / B-U$ containing b. As we noted last time, $C=\{b\}$, since b is EVEN. In $G-U$, this component becomes B, and thus is still odd. Now, notice that $|V(G)|=|V(G / B)|+|V(B)|-1$ and $|M|=|M / B|+\frac{|V(B)|-1}{2}$. Therefore,

$$
\begin{aligned}
|M| & =\frac{1}{2}(|V(G / B)|+|U|-o(G / B-U))+\frac{|V(B)|-1}{2} \\
& =\frac{1}{2}(|V(G)|+|U|-o(G / B-U)) \\
& =\frac{1}{2}(|V(G)|+|U|-o(G-U)),
\end{aligned}
$$

as wanted. We have proved the following Tutte-Berge Formula.
Theorem 1. For every graph G,

$$
\begin{equation*}
\nu(G)=\min _{U \subseteq V(G)} \frac{1}{2}(|V|+|U|-o(G-U)) \tag{1}
\end{equation*}
$$

where $o(G-U)$ is the number of connected components of odd order of $G-U$.

1 A Different Proof of Theorem 1

Let us see a different (and independent) proof of Theorem 1.
Second Proof of Theorem 1. Let G be a graph. We may assume that G is connected (why?). We have already seen in the first lecture that

$$
|\nu(G)| \leq \min _{U \subseteq V(G)} \frac{1}{2}(|V(G)|+|U|-o(G-U))
$$

We prove the reverse inequality by induction on $|V(G)|$, the result holding trivially if $|V(G)|=1$. Assume now that $|V(G)| \geq 2$ and the formula holds for graphs on at most $|V(G)|-1$ vertices. We consider two cases.
There is a vertex $v \in V(G)$ that is matched in every maximum matching of G. Set $G^{\prime}:=G-v$. Then, $\nu\left(G^{\prime}\right)=\nu(G)-1$, for otherwise G would have a maximum matching not covering v. Let $U^{\prime} \subseteq V\left(G^{\prime}\right)$ such that $\nu\left(G^{\prime}\right)=\frac{1}{2} \cdot\left(\left|V\left(G^{\prime}\right)\right|+\left|U^{\prime}\right|-\right.$ $\left.o\left(G^{\prime}-U^{\prime}\right)\right)$. Further, set $U:=U^{\prime} \cup\{v\}$. Note that $o(G-U)=o\left(G^{\prime}-U^{\prime}\right)$ since $G-U=G^{\prime}-U^{\prime}$. Consequently,

$$
\begin{aligned}
\nu(G) & =\frac{1}{2} \cdot\left(\left|V\left(G^{\prime}\right)\right|+|U|-1-o(G-U)\right)+1 \\
& =\frac{1}{2} \cdot(|V(G)|+|U|-o(G-U)) .
\end{aligned}
$$

Every vertex of G is unmatched in at least one maximum matching of G. We show that, in this case, $\nu(G)=\frac{1}{2} \cdot(|V(G)|-1)$. This yields the desired conclusion with $U=\emptyset$. Suppose on the contrary that $\nu(G)<\frac{1}{2} \cdot(|V(G)|-1)$. For every maximum matching M, we set

$$
d(M):=\min \left\{\operatorname{dist}_{G}(u, v): u \text { and } v \text { are } M \text {-unmatched }\right\}
$$

where dist_{G} is the distance function in G. We choose M such that $d(M)$ is minimised, and set $d:=d(M)$. Note that $d>1$, for otherwise $M+u v$ would be a matching larger than M. Let t be an internal vertex on a shortest $u v$-path in G. In particular, t is M-matched. We know that there exists a maximum matching N such that t is N-unmatched (and hence $N \neq M$). Choose such a matching N with moreover the smallest symmetric difference with M.

First, notice that both u and v are N-matched, for otherwise (N, t, u) or (N, t, v) would contradict our choice of (M, u, v). By our assumptions (and since $|M|=|N|$), there exists a vertex $x \neq t$ that is M-matched and N-unmatched (hence $x \notin\{u, v\}$). Let $y \in V$ such that $x y \in M$. Since N is a maximum matching, there exists $z \in$ V such that $y z \in N$. Hence, $z \neq x$. Therefore, $N^{\prime}:=(N \backslash\{y z\}) \cup\{x y\}$ is a maximum matching of G. Moreover, t is N^{\prime}-unmatched and $\left|N^{\prime} \Delta M\right|<|N \Delta M|$, a contradiction.

The preceding proof does not give a way to find a set U achieving (1), but, as we have seen, Edmonds's blossom algorithm does. The algorithm also gives us a way to exhibit a very nice structure of graphs, called the Edmonds-Gallai decomposition [3, $4,5]$. The proof of the next theorem can be obtained by analysing a maximum matching output by Edmonds's algorithm, but we omit it. Given a graph G and a set $X \subseteq V(G)$, we define $N(X)$ to be the vertices that do not belong to X and have a neigbhour in X. A graph G is factor-critical if for every $v \in V(G)$, the graph $G-v$ has a perfect matching.

Theorem 2. Let G be a graph and set
$\mathscr{D}(G):=\{v \in V(G): \exists$ a maximum matching of G in which v is unmatched $\}$,
$\mathscr{A}(G):=N(\mathscr{D}(G))$,
$\mathscr{C}(G):=V(G) \backslash(\mathscr{D}(G) \cup \mathscr{A}(G))$.
Then,

1. The set $\mathscr{A}(G)$ achieves equality in (1);
2. $\mathscr{C}(G)$ is the union of the even components of $G-\mathscr{A}(G)$;
3. $\mathscr{D}(G)$ is the union of the odd components of $G-\mathscr{A}(G)$; and
4. every odd component of $G-\mathscr{A}(G)$ is factor-critical.

2 Perfect Matchings

A matching M of a graph G is perfect if $|M|=|V(G)| / 2$, i.e. every vertex of G is incident to an edge in M. Tutte's perfect matching theorem is a direct consequence of Theorem 1 .

Theorem 3. A graph G has a perfect matching if and only if $G-U$ has at most $|U|$ odd components for every $U \subseteq V(G)$.

As an application of Theorem 3, let us derive the celebrated (and useful) Petersen's theorem [7], proved in 1891. A graph is cubic if every vertex has degree 3. Given a graph G, a bridge is an edge the removal of which disconnects G.

Theorem 4. Every cubic bridgeless graph has a perfect matching.
Proof. By Theorem 3, it suffices to show that $G-U$ has at most $|U|$ odd components, for every $U \subseteq V(G)$. Fix $U \subseteq V(G)$, and let \mathscr{C} be the collection of connected components of $V(G)$. We define $e(U, \mathscr{C})$ to be the number of edges with exactly one end-vertex in U. Since G is cubic,

$$
\begin{equation*}
e(U, \mathscr{C}) \leq 3 \cdot|U| \tag{2}
\end{equation*}
$$

Figure 1: The edges can be partitioned into a 2-factor (in bold) and a perfect matching. The 2 -factor is composed of a 5 -cycle and a 15 -cycle.

On the other hand, every connected component $C \in \mathscr{C}$ is linked to U by at least two edges, since G is bridgeless. Now, let C be an odd component. Let $e(C)$ and $e(U, C)$ be the number of edges with both end-vertices in C and the number of edges with exactly one end-vertex in C, respectively. Since G is cubic,

$$
\begin{equation*}
3 \cdot|V(C)|=2 \cdot e(C)+e(U, C) . \tag{3}
\end{equation*}
$$

Observe that the left-hand side of (3) is odd (since C is an odd component). Consequently, $e(U, C)$ is odd, too. Since $e(U, C) \geq 2$, we deduce that $e(U, C) \geq 3$. Therefore, letting \mathscr{E} be the set of odd components, we obtain

$$
e(U, \mathscr{C}) \geq 3 \cdot|\mathscr{E}|
$$

Combining this with (2), we obtain $|\mathscr{E}| \leq|U|$, as wanted.
We end this section with some remarks. The first one is an exercise: find a cubic graph without a perfect matching (hence, with bridges!). Can you find one with exactly one bridge? With exactly two?

The second remark concerns the structure of bridgeless cubic graphs. Let G be such a graph. Theorem 4 ensures that G has a perfect matching M. Consider $G-M$: it is a spanning 2 -regular subgraph of G, i.e. a collection of vertex-disjoint cycles such that each vertex of G belongs to a cycle. A subgraph that is spanning and k-regular is a k-factor. So, a 1 -factor is precisely a perfect matching, and $G-M$ is a 2 -factor. Theorem 4 yields that every cubic bridgeless graph contains a 1 -factor and a 2 -factor that are edge-disjoint. See Figure 1.

Let us define the notion of edge-colouring. Given a graph G, a k-edge-colouring is a function $c: E(G) \rightarrow\{1, \ldots, k\}$ such that $c(e) \neq c\left(e^{\prime}\right)$ for every two adjacent edges e and e^{\prime} of G. The chromatic index $\chi^{\prime}(G)$ of G is the smallest integer k for

Figure 2: The Petersen graph has chromatic index 4.
which G has a k-edge-colouring. Thus, a k-edge colouring is a partition of the edges into k matchings (each colour class, i.e. all the edges of a given colour, is a matching of G). Note that the chromatic index of a graph G is always at least its maximum degree $\Delta(G)$. A celebrated theorem of Vizing $[8,9]$ ensures that $\chi^{\prime}(G) \leq \Delta(G)+1$ for every graph G. Deciding between the two values is $N P$-complete, even for cubic graphs [6]. More can be said for special classes of graphs, e.g. if G is bipartite then $\chi^{\prime}(G)=\Delta(G)$. This is not true for cubic graphs, as shown by the Petersen graph (see Figure 2). Cubic graphs with chromatic index index 4 are called snarks, because they are hard to find (often, other properties are required to avoid trivialities). Edgecolouring of cubic graphs is linked to deep problems such as the 4 -Color Theorem. A vertex colouring of a graph is an assignment of colours to the vertices such that no two adjacent vertices have the same colour. The 4-Colour Conjecture states that every planar graph can be vertex-coloured with 4 colours. This conjecture was proved to be true by Appel and Haken [1, 2] in 1977. A century ago, Tait proved that the 4 -Colour Conjecture was true if and only if every planar cubic bridgeless graph is 3 -edge-colourable. More about edge-colouring in the exercises!

References

[1] K. Appel and W. Haken. Every planar map is four colorable. I. Discharging. Illinois J. Math., 21(3):429-490, 1977.
[2] K. Appel, W. Haken, and J. Koch. Every planar map is four colorable. II. Reducibility. Illinois J. Math., 21(3):491-567, 1977.
[3] J. Edmonds. Paths, trees, and flowers. Canad. J. Math., 17:449-467, 1965.
[4] T. Gallai. Kritische Graphen. II. Magyar Tud. Akad. Mat. Kutató Int. Közl., 8:373-395 (1964), 1963.
[5] T. Gallai. Maximale Systeme unabhängiger Kanten. Magyar Tud. Akad. Mat. Kutató Int. Közl., 9:401-413 (1965), 1964.
[6] I. Holyer. The NP-completeness of edge-coloring. SIAM J. Comput., 10(4):718720, 1981.
[7] J. Petersen. Die Theorie der regulären graphs. Acta Math., 15(1):193-220, 1891.
[8] V. G. Vizing. On an estimate of the chromatic class of a p-graph. Diskret. Analiz No., 3:25-30, 1964.
[9] V. G. Vizing. The chromatic class of a multigraph. Kibernetika (Kiev), 1965(3):2939, 1965.

