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Some Definitions

We just give the definitions and characterisations needed. More background can be
found in the treatise by Schrijver [4, Chapter 5].

A convex combination of the vectors x1, . . . , xk ∈ Rn is a vector equal to
∑k

i=1 λixi
where λ1, . . . , λk ∈ R+ with

∑k
i=1 λi = 1. A set C ⊆ Rn is convex if for every x, x′ ∈ C

and every λ ∈ [0, 1], it holds that λx + (1− λ)y ∈ C. The convex hull conv. hull(X)
of a set X ⊆ Rn is the smallest convex set that contains X, that is{

λ1x1 + . . .+ λnxn : n ∈ N, ∀i ∈ {1, . . . , n}, xi ∈ X and λi ∈ R+,
∑
i

λi = 1

}
.

A polytope is the convex hull of finitely many vectors of Rn. A polyhedron is a set
X ⊆ Rn such that there exists an m × n-matrix A and a vector b ∈ Rm (for some
integer m) with

X = {x ∈ Rn : Ax ≤ b} .

A classical and fundamental result states that a set is a polytope if and only if it is
a bounded polyhedron.

An element x of a polyhedron P is a vertex if it cannot be expressed as a convex
combination of elements in P \ {x}. Let us give a useful characterisation of vertices
of polytopes. Let P = {x ∈ Rn : Ax ≤ b} be a polytope, and let x ∈ P . Then, x is
a vertex of P if and only if rank(Ax) = n, where Ax is the submatrix of A composed
of the row vectors ri of A such that rix = bi.

It follows from this characterisation that if A and b are rational (that is, have
rational coordinates), then every vertex of P is rational.

1 The (Perfect) Matching Polytope

Let G = (V,E) be a graph. For U ⊆ V , we define δG(U) (or just δ(U)) to be the
set of edges of G with exactly one end-vertex in U . For every vertex v ∈ V , we set
δ(v) := δ({v}). We identify a matching M with its incidence vector xM ∈ {0, 1}|E|,
where xM(e) = 1 if and only if e ∈M . For W ⊆ E, let x(W ) :=

∑
e∈W x(e).
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The matching polytope of G is the set

M := conv. hull{xM : M matching of G} .

Let
N :=

{
x ∈ [0, 1]|E| : ∀v ∈ V, x(δ(v)) ≤ 1

}
.

Remark 1.

• The set N is a polytope (and hence convex).

• M ⊆ N , since N is convex and every vertex of M belongs to N .

In general, M is not equal to N . For instance, if G = K3 then (1/2, 1/2, 1/2) ∈
N \M . However, equality holds if G is bipartite, as we show next.

Theorem 1. If G is bipartite then M = N .

Proof. We know that M ⊆ N . Suppose that N 6⊆ M . Then, it follows from
Remark 1 that N has a non-integral vertex (indeed, every integral point of N is
in M , so if every vertex of N were integral then N would be contained in M by
convexity).

By the definition, a vertex cannot be expressed as a convex combination of the
other points. Thus, to obtain a contradiction, if suffices to show that every non-
integral point of N is a convex combination of other points of N .

Let x be a non-integral point of N . Let G′ be the subgraph of G spanned by the
edges e such that x(e) /∈ {0, 1}. We apply a standard shifting technique. For the ease
of exposition, we consider two cases, regarding whether G′ is acyclic.
Suppose that G′ contains a cycle. Let C := v1e1v2e2 . . . vkek. Note that k is even since
G is bipartite. Set a := min{ei : 1 ≤ i ≤ k} and b := max{ei : 1 ≤ i ≤ k}. Further,
set ε := min{a, 1− b}. Thus, ε > 0.

We define the point x− by

x−(e) := x(e)− ε if e = e2i+1

x−(e) := x(e) + ε if e = e2i

x−(e) := x(e) otherwise.

Then, x− ∈ [0, 1]E \ {x} and for every vertex v ∈ V ,∑
e∈δ(v)

x−(e) =
∑
e∈δ(v)

x(e) ≤ 1 .
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Hence, x− ∈ N \ {x}. Similarly, the point x+ defined by

x+(e) := x(e) + ε if e = e2i+1

x+(e) := x(e)− ε if e = e2i

x+(e) := x(e) otherwise

belongs to N \ {x}. Furthermore, x = 1
2
(x− + x+).

The graph G′ is acyclic. We apply the same argument to a path of G′. Let v1e1 . . . vk
be a path of G′ forming a connected component. Thus, if e is an edge incident with
v1 and distinct from e1, then x(e) = 0. Similarly for vk. As a result, the exact same
definition of x+ and x− yield the conclusion.

1.1 The General Case

We turn our attention to the non-bipartite case. To this end, we first prove a char-
acterisation of the perfect matching polytope, and next we show that it implies a
characterisation of the matching polytope, first found be Edmonds [2]. The perfect
matching polytope of a graph G is the set

P := conv. hull {xM : M perfect matching of G} .

A characterisation of the perfect matching polytope of bipartite graphs is obtained
by replacing the inequality by an equality in the definition of N .

Theorem 2. The perfect matching polytope of a graph G is the set of all x ∈ R|E(G)|

that satisfy

x(e) ≥ 0 for each e ∈ E(G), (1a)

x(δ(v)) = 1 for each v ∈ V (G), (1b)

x(δ(U)) ≥ 1 for each U ⊆ V (G) with |U | odd. (1c)

This theorem can be proved using Edmonds’s algorithm. We provide a direct
proof, originally found by Aráoz, Cunningham, Edmonds and Green-Krótki [1] and
Schrijver [3]. Consult the book by Schrijver [5, p. 438] for more details.

Proof of Theorem 2. Let Q be the set of vectors determined by (1). Note that P ⊆
Q. Assume that the statement of the theorem is not true, and choose a graph G
with Q 6= P such that |V (G)| + |E(G)| is as small as possible. In particular, G is
connected and |V (G)| is even for otherwise Q = ∅ = P. Let x be a vertex of Q that
is not in P. Then, x(e) ∈ (0, 1) for every edge e ∈ E(G). Indeed, if x(e) = 0 then
we could remove e, and if x(e) = 1 we could remove the end-vertices of e: in either
case, this would contradict the minimality of |V (G)|+ |E(G)|. Thus, G has minimum
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degree at least 2, so |E(G)| ≥ |V (G)|. If |E(G)| = |V (G)|, then G is a cycle and
Q = P. So, |E(G)| > |V (G)|.

Since x is a vertex, it satisfies |E(G)| linearly independent inequalities of (1) with
equality, as we pointed out. Since no equality of type (1a) is an equality for x, and
there are |V (G)| < |E(G)| inequalities of type (1b), we deduce that x satisfies an
inequality of type (1c) with equality. Therefore, there is a set U1 of odd size such
that x(δ(U1)) = 1 and |U1| ∈ {3, . . . , |V (G)| − 3} (why? If |U1| ∈ {1, |V (G)| − 1},
then compare the equality obtained with one of type (1b)...).

We define G1 to be the graph obtained from G by contracting U1 into a single
vertex u (removing loops, but keeping parallel edges if any). We set U2 := V (G) \U1

and we define G2 to be the graph obtained from G by contracting U2. Note that |U2|
is odd. Let xi be the projection of x on the edges of Gi, for i ∈ {1, 2}.

First, note that xi satisfies (1) in Gi. Indeed, let X be a subset of V (Gi) of odd
order. Let ui be the vertex arose from the contraction of Ui. If ui /∈ X, then the
conclusion holds. If ui ∈ X, then let Y be the subset of V (G) obtained from X
by replacing ui with the vertices of Ui. Since |Ui| is odd, |Y | is odd and therefore∑

e∈δ(Y ) x(e) ≥ 1, which yields the conclusion since
∑

e∈δ(X) x
i(e) =

∑
e∈δ(Y ) x(e).

Consequently, the minimality of G implies that xi belongs to the perfect matching
polytope of Gi. Thus xi can be expressed as a convex combination of vertices of Gi.
Furthermore, xi is rational since x is. Hence, we infer the existence of (not necessarily
distinct) perfect matchings M i

1, . . . ,M
i
k of Gi such that

x1 =
1

k

k∑
j=1

xM1
j

and x2 =
1

k

k∑
j=1

xM2
j
.

For each edge e ∈ δ(U1), we have x1(e) = x(e) = x2(e). Thus, the number of indices
j ∈ {1, . . . , k} such that e ∈ M1

j is k · x(e). Similarly, the number of indices j such
that e ∈M2

j is k ·x(e). Therefore, we may assume (up to renumbering the matchings)
that for every j ∈ {1, . . . , k}, the perfect matchings M1

j and M2
j have an edge in δ(U1)

in common. As a result, the set Mj := M1
j ∪M2

j is a perfect matching of G. Moreover,
note that

x =
1

k

k∑
i=1

xMj
.

Hence, x ∈P; a contradiction.

Theorem 2 allows us to determine also the matching polytope of a graph (Ed-
monds’s matching polytope theorem).
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Theorem 3. The matching polytope of the graph G is determined by

x(e) ≥ 0 for each e ∈ E(G), (2a)

x(δ(v)) ≤ 1 for each v ∈ V (G), (2b)

x(E[U ]) ≤
⌊

1

2
|U |
⌋

for each U ⊆ V (G) with |U | odd, (2c)

where E[U ] := E(G[U ]), the set of edges of G with both endvertices in U .

Proof. Every vector of the matching polytope of G satisfies (2). Conversely, let x be
a vector satisfying (2). Let G1 and G2 be two copies of G. For convenience, a vertex
vi ∈ V (Gi) is assumed to be the copy of the vertex v ∈ V (G). For each v ∈ V (G),
add an edge between v1 and v2. Let H be the obtained graph.

For each edge e with both endvertices in some Gi, we set y(e) := x(e). For
each edge v1v2 with vi ∈ V (Gi), we set y(v1v2) := 1 − x(δ(v)). It suffices to prove
that y belongs to the perfect matching polytope of H. Indeed, y would then be a
convex combination of perfect matchings of H, which would imply that x is a convex
combination of matchings of G (why?).

We use Theorem 2 to prove that y belongs to the perfect matching polytope of
H. The vector y satisfies (1a) and (1b) by the definition and because x satisfies (2b).
It remains to check that (1c) is satisfied.

Let U ⊆ V (H) with |U | odd. Let us write U = X1 ∪ Y2 with X, Y ⊆ V (G).
Observe that y(δH(U)) ≥ y(δH(X1 \ Y1)) + y(δH(Y2 \X2)) (why?). Consequently, it
suffices to prove the result when X and Y are disjoint. Moreover, since |U | is odd,
we may assume that |X| is odd, and hence Y = ∅. Since y satisfies (1b),

|X| =
∑
v∈X

y(δH(v)) = y(δH(X)) + 2 · y(EH [U ]) ,

where EH [U ] is the set of edges of H with exactly one endvertex in U . Consequently,
as x satisfies (2c), we deduce that

y(δH(X)) = |X| − 2 · y(EH [U ]) ≥ |X| − 2 ·
⌊

1

2
|X|
⌋

= 1 .

Therefore, y belongs to the perfect matching polytope of H by Theorem 1, which
concludes the proof.

2 An Application to Cubic Graphs

Let us see an example of use of the perfect matching polytope. The elegant proof of
the following result is due to D. Král’ (personal communication).
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Figure 1: The unique cubic bridgeless graph all of which 2-factors are composed only
of 5-cycles is the Petersen graph.

Proposition 4. A cubic bridgeless graph G has a 2-factor containing a cycle of length
different from 5 if and only if G is not the Petersen graph.

Proof. Let us prove that if all 2-factors of G are composed of 5-cycles only, then
G is the Petersen graph. Let x := (1/3, . . . , 1/3) ∈ [0, 1]|E|. Since G is cubic and
bridgeless, x ∈ P. Thus, there exist k perfect matchings M1, . . . ,Mk of G and k
positive rational numbers α1, . . . , αk with

∑k
i=1 αi = 1 such that

x =
k∑
i=1

αixMi
.

We randomly choose a perfect matching M among M1, . . . ,Mk, the probability that
Mi is chosen being αi for i ∈ {1, . . . , k}. Let F be the complement of M and C
a 5-cycle of G. What is the probability that C is a cycle of F? We assert that
p := Pr(E(C) ⊆ F ) ≤ 1

6
. To see this, set X := δ(V (C)) and let wi := xMi

(X). Note
that wi ≥ 1 for every i ∈ {1, 2, . . . , k} since |V (C)| is odd. Moreover, E(C) ⊆ Fi
if and only if wi = 5. Hence, setting I := {i ∈ {1, . . . , k} : wi = 5}, we have
p =

∑
i∈I αi. Now, observe that

∑k
i=1 αiwi = x(X) = 5

3
. Therefore,

5

3
=
∑
i∈I

αiwi +
∑
i/∈I

αiwi

≥
∑
i∈I

5 · αi +
∑
i/∈I

αi

=5p+ (1− p) ,

from which it follows that p ≤ 1
6
, as asserted.

Let n := |V (G)|. If each of the 2-factors Fi is composed of n/5 cycles of length
5, then the expected number of 5-cycles in F is n/5. Since this expected number is
at most the total number of 5-cycles times 1/6, we deduce that the total number of
5-cycles in G is at least 6n/5.
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Let v ∈ V (G). Since G is a cubic graph, there are at most six edges at distance
two from v. Moreover, each such edge belongs to at most one 5-cycle containing
v. As a result, every vertex of G is contained in at most (and hence, exactly) six
5-cycles, and no vertex has an edge at distance 3. Therefore, G has 10 vertices. We
also infer that G has no 3- or 4-cycle. Consequently, a short analysis shows that G is
the Petersen graph.

Conversely, one can check that the Petersen graph has no 2-factor containing a
cycle of length different from 5.
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