
EXERCISES

MASTER PARISIEN DE RECHERCHE EN INFORMATIQUE 2-29-1

1. Apply Edmonds’s blossom algorithm on each of the graphs below,
starting with the matching indicated by the bold edges. Indicate the
order in which the vertices/edges are processed. For G2, the order is
imposed: start with the vertex u and the edges uv and next uw.
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2. Hall’s Theorem reads as follows. A bipartite graph with bi-partition
(A,B) has a matching covering all the vertices of A if and only if

∀X ⊆ A, |X| ≤ |N(X)| ,
where N(X) is the set of vertices adjacent to a vertex of X.

(i) Prove that every k-regular bipartite graph has a perfect match-
ing.

(ii) Prove that every (non-edgeless) bipartite graph has a matching
covering every vertex of maximum degree (use induction on the
number of edges, and Hall’s Theorem in an auxiliary graph).

(iii) Prove that the chromatic index of a bipartite graph G is equal
to the maximum degree of G.
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3. A square matrix is doubly stochastic if its entries are non-negative
real numbers and each row- and column-sums are 1. The permanent
of the square matrix A = (ai,j) is∑

σ∈Sn

n∏
i=1

ai,σ(i) .

Prove that the permanent of a doubly stochastic matrix is (strictly)
positive.

4. An edge-cover of a graph G is a set X of edges of G such that every
vertex is incident to an edge in X. Let ρ(G) be the minimum number
of edges in an edge-cover of G.

(i) Show that a minimum edge-cover consists of a disjoint union
of stars (a star is a tree having a universal vertex).

(ii) Show that if G is a graph without isolated vertices (that is,
without vertices of degree 0), then ν(G) + ρ(G) = |V (G)|.

5. Using induction on k ≥ 1, build a graph with minimum degree at
least k and exactly one perfect matching.
Prove that if G has no perfect matching, then G has a vertex all of
which incident edges belong to some maximum matching of G.

6.

(i) Construct a cubic graph with no perfect matching.
(ii) Prove that every cubic graph with at most two bridges has a

perfect matching.

7. Let G be a cubic graph, and let T := xyz be a triangle of G (that is,
x, y, z ∈ V (G) and xy, yz, zx ∈ E(G)). Let G/T be the graph obtained
from G by contracting T into a single vertex (and keeping parallel edges
that may arise).

(i) Prove that G is 3-edge-colourable if and only if G/T is.
(ii) Prove that G is bridgeless if and only if G/T is.

8. Assume that G is a cubic bridgeless graph with no triangles. Let
Q := v1v2v3v4 be a 4-cycle of G. Let ui be the third neighbour of vi.
Let H be the subgraph of G obtained by removing the vertices vi. Now,
let G1, G2 and G3 be the (multi-)graphs obtained from H as depicted
in Figure 1. Prove that (at least) one of G1, G2 and G3 is bridgeless.

9. An Euler trail of a graph is a trail (that is, a non-elementary path)
going through each edge exactly once.

(i) Prove that a graph has an Euler trail if and only if all its
vertices have even degree.

(ii) Prove that every connected 2k-regular graph with an even
number of edges has a k-factor.
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Figure 1. The graphs G1, G2 and G3.

10. Show that every 2k-regular graph is the union of k 2-factors.

11. Prove that a connected graph G has a spanning subgraph all of
which vertices have odd degree if and only if |V (G)| is even.

12. Let G be a bridgeless graph with minimum degree at least 3.

(i) Suppose that v ∈ V (G) has degree at least 4. Show that there
exist two edges e and e′ both incident to x such that G− e− e′
is connected.

(ii) Prove that G has a spanning subgraph with all vertices having
a positive and even degree. [Hint: reduce this to the case of
cubic graphs, using the following transformation: take e =
xy, e′ = xz as in (i), remove e, e′ and add a new vertex linked
precisely to x, y and z.]

13. Let G be a cubic bridgeless graph.

(i) Prove that the vector
(
1
3
, . . . , 1

3

)
∈ [0, 1]|E(G)| belongs to the

perfect matching polytope of G.
(ii) Prove that for each e ∈ E(G), there exists a perfect matching

of G that contains e.
(iii) Prove the stronger fact that for every two edges e, e′ ∈ E(G),

there exists a perfect matching of G that avoids both e and e′.


