
Grafy a počty - NDMI078 March 2009

Lecture 1
M. Loebl J.-S. Sereni

1 Introduction

Perhaps the first theorem of graph theory is Euler’s theorem, and it is also about
walking. We first write down an observation, which may be called the greedy principle
of walking. A graph is even if the degree of every vertex is even. A directed graph is
even if for each vertex, the in-degree equals the out-degree. Given a (directed) graph
G, a set of edges of G is even if the (directed) subgraph spanned by those edges is
even.

Observation 1. Each even set of (directed) edges may be partitioned into disjoint
(directed) cycles.

Proof. First, note that each non-empty even set contains a cycle since any (directed)
path in it may be prolonged. Further, if we delete a (directed) cycle from an even
set, we again obtain an even set and we can continue in this way until the remaining
set is empty. This yields a desired partition.

A (directed) graph is Eulerian if it has an Euler tour, i.e. a closed (directed) trail
containing all the (directed) edges. Here comes Euler’s theorem.

Theorem 1. A (directed) graph is Eulerian if and only if it is even and the (under-
lying multigraph of the directed) graph is connected.

Proof. The statement follows from Observation 1 since any connected collection of
disjoint (directed) cycles may be combined into a (directed) closed trail.

A connected graph is Eulerian if one can walk through all its edges exactly once
and return back to the origin. Theorem 1 provides a characterisation of Eulerian
graphs, and its proof also gives an efficient algorithm for finding an Euler tour. It
turns out that the problem changes drastically if we want to walk through each vertex
exactly once.
In the travelling salesman problem (TSP), a salesman is to make a tour of n cities,
at the end of which he has to return to the city he starts from. The cost of the
journey between any two cities is known. The TSP asks for (the cost of) a least
expensive tour. This basic discrete optimisation problem belongs to the class of
NP -complete problems, where the existence of an efficient algorithm is considered
unlikely. If the cost of the journey between a pair of cities is either 1 or +∞, we get
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a problem of finding a cycle in a graph, that goes through all the vertices. Such a
cycle is Hamiltonian; deciding whether a graph has a Hamiltonian cycle is also an
NP -complete problem.

2 Cycle space and cut space

Let G = (V, E) be a graph. The incidence matrix IG of G is the (V × E)-matrix
defined by (IG)ve = 1 if v ∈ e and (IG)ve = 0 otherwise. If A ⊆ E, the incidence
vector i(A) of A is the vector indexed by E, where [i(A)]e = 1 if e ∈ A and [i(A)]e = 0
otherwise. The symmetric difference of two sets A and B is

A4B := {x ∈ (A \B) ∪ (B \ A)} .

Note that taking the symmetric difference of two subsets of edges amounts to summing
their incidence vectors modulo 2. We usually do not make the distinction between a
set and its incidence vector.

Let K be the set of all even sets of edges (and also the set of the incidence vectors
of the even sets of edges). The next observation follows from the fact that z ∈ K if
and only if each degree of (V, z) is zero modulo 2.

Observation 2. K = {z ∈ {0, 1}E : IGz = 0}, where the equality is modulo 2.

This means that K together with the operation of symmetric difference (or sum
modulo 2 on the incidence vectors) is a vector space over the 2-element field F2. It is
the cycle space of the graph G. Since each even set is a disjoint union of cycles, the
set of the cycles of G generates the cycle space. Let us state this as a proposition.

Proposition 2. Let G = (V, E) be a graph and F ⊆ E. The following assertions are
equivalent.

(i) F is even;

(ii) F is a disjoint union of (edge sets of) cycles of G; and

(iii) IG · i(F ) = 0.

Proof. We already observed that (i)⇔(iii). Further, observe that (ii)→(i). Finally,
(i)→(ii) can be proved by induction on the size of F . Indeed, if F 6= ∅, then (V, F )
contains a cycle. Remove its edges from F to obtain a set F ′ ⊂ F . Then (V, F ′)
is even. So, if F ′ = ∅ then (ii) holds trivially, and otherwise applying the induction
hypothesis to F ′ yields (ii).

Let us generalise this construction.

Definition 1. A set E ′ ⊆ E is an edge-cut if there is a partition of V into two sets
V1 and V2 so that E ′ = {uv ∈ E : u ∈ V1 and v ∈ V2}.
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Example 1. Each non-empty edge-cut separates G, and each separating set of edges
contains a non-empty edge-cut. The empty set is the edge-cut corresponding to the
trivial bipartition (V, ∅) of V .

If D is an arbitrary orientation of G we let ID be the (V × E)-matrix satisfying
(ID)ve = 1 if e starts at v, (ID)ve = −1 if e ends at v, and (ID)ve = 0 otherwise.
Let F be an arbitrary field and let A be a matrix over F. The kernel of A is the set
K := {x ∈ FE : Ax = 0} and the image of A is the set I := {xA : x ∈ FV }. The
kernel and the image of a matrix are orthogonal complements of each other.
The kernel of ID over F is the cycle space of G over F and the image of ID is the cut
space of G over F. Hence the cycle space and the cut space are orthogonal comple-
ments. We note next that the cycle spaces corresponding to different orientations of
G are isomorphic, and the same holds for the cut spaces. To this end, we introduce
fundamental cycles and cuts.

Let G = (V, E) be a graph, and T ⊆ E a largest acyclic set of edges of G. Hence,
|T | = |V |−k, where k is the number of connected components of G. Further, for each
edge e ∈ T , the subgraph spanned by T − e has exactly k + 1 connected components.
Thus, the edges of G between those components for a cut, De. These cuts De for
e ∈ T are the fundamental cuts of G (with respect to T ). There are exactly |V | − k
fundamental cuts with respect to every maximum acyclic set of edges.

On the other hand, for each e ∈ E \T , the set T ∪{e} contains exactly one cycle,
Ce. These cycles are the fundamental cycles of G (with respect to T ). There are
exactly |E| − |V | + k fundamental cycles with respect to each maximum acyclic set
of edges.

As we note next, fundamental cycles and fundamental cuts are basis of the cycle
space and the cut space, respectively.

Observation 3. Let G = (V, E) be a graph and D = (V, A) an orientation of G. For
every maximum acyclic set of edges T , the fundamental cycles and the fundamental
cuts (with respect to T ) generate the cycle space and the cut space, respectively. In
particular,

dim(I ) = |V | − k

and
dim(K ) = |E| − |V |+ k ,

where k is the number of the connected components of G. Moreover, the cycle spaces
over F of all the possible orientations of G are isomorphic (and hence so are the cut
spaces).

Proof. Let T ⊆ E be a maximum acyclic set of edges of G. Let B and B′ be
the sets of fundamental cycles and fundamental cuts with respect to T , respectively.
The vectors in B are independent over F, since for each e ∈ E \ T the coordinate
corresponding to e is 0 in all the vectors of B except Ce. Consequently,

dim(K ) ≥ |B| = |E| − |V |+ k .
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Similarly, the vectors in B′ are independent over F, since each vector Se is zero on
the coordinates of all the edges in T except e. Consequently,

dim(I ) ≥ |B′| = |T | = |V | − k .

Now, by the definition of the cut space and the cycle,

dim(K ) + dim(I ) = dim(FE) = |E| .

Therefore, dim(K ) = |E| − |V | + k and dim(I ) = |V | − k. Hence, the sets B and
B′ are basis of K and I , respectively.

As a result, note that the induced cycles of a graph generate its cycle space.
Let us make another remark on the cycle and cut spaces. Fix a field F. Let

G = (V, E) be a graph and D = (V, A) an orientation of G. A circulation (of G over
F) is a function f := E → F such that for every vertex v ∈ V ,∑

e=u→v∈A

f(e) =
∑

e=v→u

f(e) .

The cycle space of a graph G over F is the set of all the circulations over F of an
orientation D = (V, A) of G. If F = F2, then the circulations coincide with the even
sets of arcs of G. We can make an analogous observation for the cut space. Let p
be a potential on G, i.e. a mapping from V to F. Given an orientation D = (V, A)
of G, the corresponding potential difference is the function p′ : E → F defined by
p′(e = uv) := p(v) − p(u) whenever u → v ∈ A. If F = F2 then the potential
differences coincide with the incidence vectors of the edge-cuts.

Max-Cut and Min-Cut problems belong to the basic hard problems of computer
science. Given a graph G = (V, E) with a (rational) weight w(e) assigned to each edge
e ∈ E, the Max-Cut problem asks for the maximum value of

∑
e∈E′ w(e) over all edge-

cuts E ′ of G, while the Min-Cut problem asks for the minimum of the same function.
The Max-Cut problem is NP -complete for non-negative edge-weights and hence both
Max-Cut and Min-Cut problems are hard for general rational edge-weights. The Min-
Cut problem is efficiently (polynomially) solvable for non-negative edge-weights. This
has been a fundamental result of computer science, known as the Max-flow/Min-cut
algorithm. Still, there are some special important classes of graphs where the general
Max-Cut problem is efficiently solvable. One such class is the class of the planar
graphs.

3 Planar graphs and graphs on surfaces

Let us describe some results on planar representations, i.e. drawings (embeddings)
of graphs in the plane so that the vertices are represented by distinct points, each
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edge is represented by a continuous curve between the representations of the end-
vertices of the edge, and the interior of each edge-representation is disjoint with the
rest of the graph representation (i.e., in particular the edges do not cross each other).
The graphs that can be represented (embedded) in the plane R2 in such a way are
planar. A plane graph, or topological plane graph is a planar graph along with a given
embedding in R2. We deal with the planar embeddings in an intuitive way. More
background on embeddings is found in the book by Mohar and Thomassen [1]. In
particular, consult it for all omitted proofs of this section.

Let us start by stating the very intuitive (yet definitely non-trivial) Jordan Curve
Theorem. A simple closed curve of R2 is the image of a continous map from the
sphere S1 into R2.

Theorem 3. Any simple closed curve C divides the plane into exactly two connected
components. Both of these regions have C as the boundary.

A curve in the plane is a polygonal arc if it is the union of a finite number of
straight line segments. The following lemma is very intuitive.

Lemma 4. Every planar graph may be embedded into the plane so that all edges are
represented by simple polygonal arcs.

By the definition, each plane graph is a subset of the plane. A face of a plane
graph is any connected component of its planar complement. Exactly one face of a
plane graph G is unbounded, the outer face of G. Given a planar graph G we let
n, m and f be its number of vertices, edges and faces, respectively. These numbers
are interconnected by the following Euler’s formula.

Theorem 5. Let G be a connected plane graph. Then

n−m + f = 2 .

Proof. Fix the number n ≥ 1 of vertices of G. Since G is connected, m ≥ n− 1. We
proceed by induction on m ≥ n − 1. If m = n − 1 then G is a tree. Hence, f = 1
and the formula is correct. Suppose that m > n − 1 and the formula is true for all
connected plane graphs with n vertices and m′ < m edges. Then, G contains a cycle,
and so G contains an edge e such that G− e is connected. Consequently, G− e is a
plane graph with n vertices, m−1 edges and f−1 faces. By the induction hypothesis,
n− (m− 1) + (f − 1) = 2, which concludes the proof.

Definition 2. Given a plane graph, a facial cycle is a set of edges that is a cycle and
bounds a face.

Theorem 6. Let G be a 2-connected plane graph. Then each face is bounded by a
cycle of G and each edge belongs to the facial cycles of exactly two faces.
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Proof. We proceed by induction on the number of vertices of G, the result being true
for cycles. Suppose that G is a 2-connected graph with n > 3 vertices. The graph
G has an edge e so that G − e is 2-connected, or G has a vertex v of degree 2. In
the former case, applying the induction hypothesis to G − e yields the result, while
in the latter case the induction hypothesis is applied to the graph obtained from G
by contracting an edge incident with v (and removing the parallel edge that may
arise).

What is the maximum number of edges of a planar graph with n vertices? Quite
intuitively the maximum is achieved for a plane graph where each face is a triangle. A
plane graph each face of which is a triangle is a plane triangulation. In such a graph,
every face contains exactly three edges and each edge is in exactly two faces. Thus,
3f = 2m. Now, applying Euler’s formula yields that 2 = n−m + f = n−m + 2

3
·m,

and thus m = 3n − 6. Hence, each planar graph with n vertices has at most 3n − 6
edges. In particular, each planar graph has a vertex of degree at most 5.

Which graphs are not planar? The previous observation implies that K5 is not
planar. Using the Jordan Curve Theorem, one can show that K3,3 is not planar
either. Kuratowski’s theorem states that these are in fact the only essential non-
planar graphs.

An important concept is that of the dual graph G∗ of a plane graph G. It turns
out to be convenient to define G∗ as an abstract (not topological) graph. But we need
to allow multiple edges and loops, which is not included in the concept of the graph
as a pair (V, E), where E ⊆

(
V
2

)
. A standard way out is to define a graph as a triple

(V, E, g) where V, E are sets and g is a function from E to
(

V
2

)
∪ V which gives to

each edge its endvertices. For instance, e ∈ E is a loop if and only if g(e) ∈ V . Now
we can define G∗ as triple (F (G), {e∗ : e ∈ E(G)}, g) where F (G) is the set of the
faces of G and g(e∗) = {f ∈ F (G) : e belongs to the boundary of f}.

It is important that the dual graph is defined with respect to an embedding. In
fact, a planar graph may have several non-isomorphic dual graphs associated with it,
corresponding to its different embeddings in the plane.
If G is a topological planar graph then G∗ is planar. There is a natural way to
properly draw G∗ to the plane: represent each dual vertex f ∈ F (G) as a point on
face f , and represent each dual edge e∗ by a curve between the points representing
its endvertices, which crosses exactly once the representation of e in G and is disjoint
from the rest of the representations of both G and G∗.
Recall that a set of edges is even if it induces even degree at each vertex. A subset
E ′ of edges of a plane graph G is dual even if {e∗ : e ∈ E ′} is an even set of edges of
G∗.

Observation 4. The dual even subsets of edges of G are exactly the edge-cuts of G.

We can actually be more precise. We saw that cycles and edge-cuts are dual from
an algebraic point of view. We now show that they are also dual from a geometric
point of view.
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Proposition 7. Let G = (V, E) be a connected plane multigraph. A set F ⊆ E is a
cycle in G if and only if F ∗ is a minimal edge-cut in G∗.

Proof. By the definition of G∗, two vertices f ∗1 and f ∗2 of G∗ are in the same component
of G∗−F ∗ if and only if the corresponding faces f1 and f2 of G are in the same region
of R2 \F . Indeed, a f ∗1 f ∗2 -path in G∗ is an arc from f1 to f2 in R2 \F , and conversely
if there is an arc in R2 \ F from f1 to f2, then we can choose one avoiding V and
hence obtain a f ∗1 f ∗2 -path in G∗.

As a result, if F is a cycle in G, then we deduce from the Jordan Curve Theorem
that G∗−F ∗ has exactly two components, and hence F ∗ is a minimal edge-cut of G∗.

Conversely, suppose that F ∗ is a minimal edge-cut of G∗. Then R2 \ F is not
connected, therefore F ∗ cannot span a forest in G∗ (since a forest has only one face).
So F ∗ contains a cycle, and by the previous implication it cannot contain any further
edge since F ∗ is minimal.

Proposition 8. Fix k ∈ {2, 3} Let G be a plane graph and G∗ its dual graph. If G
is k-connected then so is G∗.

Proof. Exercise!

Now we are ready to describe surfaces. A surface is a connected compact Hausdorff
topological space S which is locally homeomorphic to an open disc in the plane, i.e.,
each point of S has an open neighborhood homeomorphic to the open unit disc in R2.
The next theorem expresses that we can get all surfaces by glueing together triangles.

Theorem 9. Every surface has a finite triangulation of dimension 2.

Let us consider two disjoint triangles T1, T2 with all sides equal, in a 2-simplex F
of a triangulation of a surface S. We can make a new surface S ′ from S by deleting
from F the interiors of T1, T2 and identifying T1 with T2 such that the clockwise
orientations (in F ⊆ R2) around T1 and T2 disagree. The surface S ′ is obtained from
S by adding a handle. There is another possibility of identifying T1 with T2; The
resulting surface S ′′ is obtained from S by adding a twisted handle. Finally let T be
a quadrangle (with equilateral sides) in F . We let S ′′′ be the surface obtained from
S by deleting the interior of T and identifying diametrically opposite points of the
quadrangle. The surface S ′′′ is obtained from S by adding a crosscap.

Let us consider now all surfaces obtained from the sphere S0 (which we can think
of here as a tetrahedron) by adding handles, twisted handles and crosscaps. If we
add h handles to S0, we obtain Sh, the orientable surface of genus h. If we add h
crosscaps to S0 we obtain Nh, the nonorientable surface of genus h. Surface S1 is the
torus (the doughnut surface), N1 is the projective plane, and N2 is the Klein bottle.
The Klein bottle cannot be realised as a subset of R3.
The location and the order of adding handles and crosscaps is not important: the
resulting surface is always the same, up to homeomorphism. Adding a twisted handle
amounts to the same, up to homeomorphism, as adding two crosscaps. Moreover, if
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we have already added a crosscap, then adding a handle amounts to the same, up
to homeomorphism, as adding a twisted handle. In particular, if S is the surface
obtained from the sphere by adding h handles, t twisted handles and c crosscaps then
S = Sh provided t = c = 0 and S = N2h+2t+c otherwise.
Now we are ready to state the Classification Theorem for surfaces.

Theorem 10. Every surface is homeomorphic to precisely one of the surfaces Sh or
Nk.

Next we extend the concept of a triangulation of dimension 2 to embeddings of
graphs. Let X be a topological space. Analogously as in the Euclidean space, a
curve in X is the image of a continuous function f : [0, 1] → X. The curve is simple
if f is one-to-one, and it connects its endpoints f(0) and f(1). A curve is closed
if f(0) = f(1). A topological space is (arcwise) connected if any two elements are
connected by an arc in X. A set C ⊆ X separates X if X − C is not connected. A
face of C ⊆ X is a maximal connected component of X − C.
A graph G is embedded in a topological space X if the vertices of G are distinct
elements of X and every edge of G is a simple arc connecting its two endvertices in
X and such that its interior is disjoint from other edges or vertices. Every graph has
an embedding in R3. A graph embedded in a topological space X is also a topological
graph. If G is a topological graph then F (G) is the set of its faces.
The notion generalising triangulations is that of maps.

Definition 3. A map is a topological graph embedded on an orientable surface so
that each face is homeomorphic to an open disc in the plane.

The next observation is Euler’s formula.

Lemma 11. Let Sh be an orientable surface of genus h and let G be a map in Sh

with n vertices, e edges and f faces. Then n− e + f = 2− 2h.

The genus of a map is usually defined as the genus of the surface where the map
exists. Lemma 11 allows us to define the Euler characteristic χ(Sh) of the surface Sh

in analogy to simplicial complexes by setting χ(Sh) := 2− 2h.

What is a map? The definition of a map is presented above, but the truth is that it
is a notion that confuses people. Edmonds realised that maps may be defined purely
combinatorially.

Theorem 12. There is a natural bijection between maps and the connected graphs
decorated with fixed cyclic orderings of the incident edges of each vertex.

Physicists sometimes prefere fatgraphs to maps. This term corresponds to a helpful
graphic representation of a graph (not necessarily connected), in which the vertices are
made into discs (islands) and connected by fattened edges (bridges) prescribed by the
cyclic orderings of the incident edges of each vertex. This defines a two-dimensional
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orientable surface with boundary. Let F ve a fatgraph, and also the corresponding
surface with bounded by F . Each component of the boundary of F is a face of F .
Each face is an embedded circle. We let G(F ) be the underlying graph of F . Define
e(F ), n(F ), f(F ), c(F ) and g(F ) to be the number of edges, vertices, faces, connected
components, and the genus of F , respectively. Euler’s formula can be rewritten for
for fatgraphs.

Lemma 13. n(F )− e(F ) + f(F ) = 2(c(F )− g(F )).

An important concept is that of the dual graph G∗ of a (general) topological graph
G. It may be defined for general topological graphs in exactly the same way as for
the topological planar graphs.
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