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Lecture 4
M. Loebl J.-S. Sereni

1 The permanent of a matrix

1.1 Minc’s conjecture

The set of permutations of {1, . . . , n} is Sn. Let A = (ai,j)1≤i,j≤n be a square matrix
with real non-negative entries. The permanent of the matrix A is

perm(A) :=
∑
σ∈Sn

n∏
i=1

ai,σ(i) .

In 1973, Brègman [4] proved Mı́nc’s conjecture [18].

Theorem 1 (Brègman, 1973). Let A = (ai,j)1≤i,j≤n ∈ {0, 1}n×n. Set ri :=
∑n

j=1 ai,j.
Then,

perm(A) ≤
n∏
i=1

(ri!)
1/ri .

Further, if ri > 0 for every i ∈ {1, 2, . . . , n}, then there is equality if and only if up
to permutations of rows and columns, A is a block-diagonal matrix, each block being
a square matrix with all entries equal to 1.

Several proofs of this result are known, the original being combinatorial. In 1978,
Schrijver [22] found a neat and short proof. A probabilistic description of this proof
is presented in the book of Alon and Spencer [3, Chapter 2]. The one we will see
in Lecture 5 uses the concept of entropy, and was found by Radhakrishnan [20] in
the late nineties. It is a nice illustration of the use of entropy to count combinatorial
objects.

1.2 The van der Waerden conjecture

A square matrix M = (mij)1≤i,j≤n of non-negative real numbers is doubly stochastic
if the sum of the entries of every line is equal to 1, and the same holds for the sum of
the entries of each column. In other words,

∀(i, j) ∈ {1, 2, . . . , n}2,
n∑
k=1

mik =
n∑
k=1

mkj = 1 .
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In 1926, van der Waerden conjectured that the permanent of every doubly stochas-
tic matrix M of size n × n is at least n!

nn , with equality if and only if mij = 1
n

for
all pairs (i, j) ∈ {1, 2, . . . , n}2. This was proved more than fifty years later by Ego-
rychev [7, 8, 9] and, independently, Falikman [10]. See also the work of Gyires [12, 13].

Theorem 2 (Egorychev, Falikman, 1979-1980). If M = (mij)1≤i,j≤n is a doubly
stochastic matrix then

perm(M) ≥ n!

nn
,

with equality if and only if mij = 1
n

for all pairs (i, j) ∈ {1, 2, . . . , n}2.

Forthwith some applications of those theorems to obtain bounds on the number
of perfect matchings of certain graphs.

2 The number of perfect matchings

Let G be a graph. A matching of G is a set M of edges of G such that no two edges
in M are adjacent in G. A matching M is perfect if every vertex of G is incident to
an edge of M . We let pm(G) be the number of perfect matchings of G.

The permanent of a 0-1-matrix can be interpreted as the number of perfect match-
ings in a bipartite graph. More precisely, given such a matrix A = (aij)1≤i,j≤n, we can
define a bipartite graph G with two parts U = {u1, . . . , un} and V = {v1, . . . , vn},
and there is an edge between ui ∈ U and vj ∈ V if and only if aij = 1. It directly
follows from the definition of the permanent that

perm(A) = pm(G) .

Conversely, the number of perfect matchings of a bipartite graph is the permanent
of its incidence matrix, i.e. if U and V are the two color classes, the matrix is
(auv)(u,v)∈U×V with auv = 1 if uv is an edge, and 0 otherwise.

We focus on bounding the number of perfect matchings in some classes of graphs.
It is an old question, the study of which began with the class of regular bipartite
graphs. The first non-trivial lower bound on the number of perfect matchings in 3-
regular bridgeless bipartite graphs was obtained in 1969 by Sinkhorn [25], who proved
a bound of n

2
. He thereby established a conjecture of Marshall. The same year,

Minc [19] increased this lower bound by 2 and one year after, Hartfiel [14] obtained
n
2

+ 3. Next, Hartfiel and Crosby [15] improved the bound to 3
2
n − 3. The first

exponential bound was obtained in 1979 by Voorhoeve [26], who proved 6 ·
(

4
3

)n/2−3
.

This was generalised to all regular bipartite graphs in 1998 by Schrijver [23], who
thereby proved a conjecture of himself and Valiant [24]. His argument is highly
involved, and the obtained bound is a bit weaker than Voorhoeve’s when applied to
3-regular graphs. As a particular case of a different and more general approach (using
hyperbolic polynomials), Gurvits [11] managed to slightly improve the bound (in
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particular, Gurvits’ bound matches Voorhoeve’s when applied to 3-regular graphs),
as well as simplify the proof. His main result unifies (and generalises) the conjecture
of Schrijver and Valiant with that of van der Waerden on the permanent of doubly
stochastic matrices.

The problem of lower bounding the number of perfect matchings is also related
to the following conjecture of Lovász and Plummer (see the book by Lovász and
Plummer [17, Conjecture 8.1.8]).

Conjecture 1 (Lovász and Plummer, mid-1970s). The number of perfect matching of
a 3-regular bridgeless graph on n vertices is at least 2Ω(n).

Edmonds, Lovász, and Pulleyblank [6] proved that the dimension of the perfect
matching polytope of a cubic bridgeless graph with n vertices is at least n/4+1. Since
the vertices of the polytope correspond to distinct perfect matchings, it follows that
any 3-regular bridgeless graph on n vertices has at least n

4
+ 2 perfect matchings. A

new lower bound of n
2

+2 has been obtained [16], except for 17 exceptional graphs (one
having exactly n

2
perfect matchings, the others n

2
+1). Very recently, Esperet, Kardoš

and Král’ obtained the first super-linear bound, of order approximately n log n.
In addition, Chudnovsky and Seymour [5] proved that Lovász and Plummer’s

conjecture is true for planar graphs. We will see in a future lecture the first part of
their proof, which deals with cyclically 4-connected cubic planar graphs. Moreover,
we will also prove the conjecture for the special class of fullerene graphs.

2.1 Graphs with a given degree sequence

We present in this section a tight upper bound on the number of perfect matchings
in graphs with a given degree sequence. Its derivation as a simple consequence of
Brègman’s theorem is due to Alon and Friedland [1].

We set (0!)1/0 := 0. Before stating and proving the result, let us give some
terminology. A subgraph H of a graph G = (V,E) is spanning if every vertex of G
has degree at least 1 in H. If k ≥ 3, a k-cycle is a cycle of length k. Further, an edge
uv is considered as a 2-cycle (namely the 2-cycle uvu).

Theorem 3 (Alon and Friedland, 2008). Let G be a graph with degree sequence
d1, d2, . . . , dn. The number of perfect matchings of G is at most

n∏
i=1

(di!)
1/(2di) .

If G has no isolated vertices, then equality holds if and only if G is a disjoint union
of complete balanced bipartite graphs.

Proof. Recall that pm(G) is the number of perfect matchings of G. Thus, pm(G)2

is the number of ordered pairs of perfect matchings of G. The union of two perfect
matchings induces a subgraph of G the components of which are either even cycles or
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single edges. For convenience, we view single-edge components as 2-cycles. In other
words, pm(G)2 is the number of spanning 2-regular subgraphs consisting of even
cycles (where 2-cycles as defined above are allowed), each being counted 2s times,
where s is the number of k-cycles with k an even number greater than 2.

Let A = (auv)(u,v)∈V (G)2 be the adjacency matrix of G, i.e. auv = 1 if uv is an
edge of G, and 0 otherwise. The permanent of A counts the number of spanning
2-regular subgraphs, each being counted 2s times, where s is the number of cycles of
size greater than 2.

Consequently,

pm(G) =
√

pm(G)2 ≤
√

perm(A) ≤
n∏
i=1

(di!)
1/(2di) ,

the last inequality following from Brègman’s theorem.
We now turn to the equality case. Suppose that the graph G has no vertex of

degree 0 (i.e. no isolated vertex). The bound is surely attained if G is a disjoint union
of complete balanced bipartite graphs. Conversely, if the equality is attained then the
equality is also attained in Brègman’s bound. Since G has no isolated vertex, no row
of A sum to zero. Therefore, Brègman’s theorem ensures that, up to permutations of
rows and columns, A is a block-diagonal matrix in which each block is an all-1 square
matrix. Since G has no loops, this means that G is a disjoint union of complete
balanced bipartite graphs.

3 Super (d, ε)-regular graphs

We prove a result of Alon, Rödl and Ruciński [2] on the number of perfect matchings
in ε-regular graphs.

An ε-regular graph on 2n vertices is a bipartite graph composed of two color
classes V1 and V2 of size n and such that for any two sets U1 ⊆ V1 and U2 ⊆ V2 of size
at least εn each, ∣∣∣∣ e(U1, U2)

|U1| · |U2|
− e(V1, V2)

|V1| · |V2|

∣∣∣∣ < ε ,

where e(X, Y ) is the number of edges between X and Y . The quantity e(V1,V2)
|V1|·|V2| is the

density of the graph G. Further, G is super (d, ε)-regular if, in addition, its minimum
degree δ and its maximum degree ∆ satisfy

(d− ε) · n ≤ δ ≤ ∆ ≤ (d+ ε) · n .

Recall that a subgraph H of a graph G is spanning if every vertex of G is incident to
an edge of H. A spanning subgraph which is k-regular is a k-factor.
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Theorem 4 (Alon, Rödl and Ruciński, 1998). For every ε there exists n0 such that
for every n > n0 and d > 2ε, the number M(G) of perfect matchings of every super
(d, ε)-regular graph G on 2n vertices satisfies

(d− 2ε)nn! ≤ pm(G) ≤ (d+ 2ε)nn! .

Proof. Let G be a super (d, ε)-regular graph with bipartition (U, V ). We first prove
the upper bound. Let A = (auv)(u,v)∈U×V be the incidence matrix of G. By Brègman’s
theorem,

pm(G) = perm(A) ≤
∏
u∈U

(deg(u)!)1/ deg(u) ≤
∏
u∈U

(k!)1/k = (k!)n/k

with k := b(d + ε)nc. The announced upper bound follows by applying (twice!)
Stirling’s formula. (Note that we used neither the ε-regularity assumption nor the
lower bound on the minimum degree.)

It remains to prove the lower bound. Let us note the following consequence of van
den Waerden’s bound. If H is a k-regular bipartite graph on 2n vertices, then

pm(H) ≥
(
k

n

)n
· n! .

Indeed, let B = (bij)1≤i,j≤n be the incidence matrix of H. For every i, j, set mij :=
1
k
·bij. Since H is k-regular, the matrix M is doubly stochastic. Therefore, perm(M) ≥
n!
nn . On the other hand, it follows from the definition of the permanent that perm(B) =
kn · perm(M), and thus

pm(H) = perm(B) ≥ kn · n!

nn
.

As a result, it suffices to find a k-factor of G for k := d(d − 2ε)ne. We use the
following condition for the existence of a k-factor. Its proof is given at the end of
these notes.

The graph G has a k-factor if and only if any two sets X ⊆ U and Y ⊆ V satisfy

k · |X|+ k · |Y |+ e(Xc, Y c) ≥ kn , (1)

where Xc := U \X and Y c := V \ Y (recall that e(Xc, Y c) is the number of edges of
G with one endvertex in Xc and the other in Y c).

Consider two sets X ⊆ U and Y ⊆ V , and let us show that they satisfy the desired
condition (in what follows, we forget the ceiling in the definition of k for convenience).
Without loss of generality (by symmetry), we assume that |X| ≤ |Y |. First, if
|X|+ |Y | ≥ n, then (1) surely holds. Thus we assume now that |X|+ |Y | < n. Next,
suppose that |Y c| < ε · n. Then, |Y | > (1 − ε)n and hence |X| < εn. Consequently,
every vertex of Y c has at least δ − ε · n ≥ (d − 2ε)n = k neighbors in Xc. Thus,
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k · |Y | + e(Xc, Y c) ≥ k · |Y | + k · |Y c| = kn so that (1) holds. Finally, assume that
|Y c| ≥ ε · n. Thus, |Xc| ≥ ε · n. Since G is ε-regular,

e(Xc, Y c)

|Xc| · |Y c|
>

e(U, V )

|U | · |V |
− ε ,

and therefore

e(Xc, Y c) >

(
δ · n
n2
− ε
)
· |Xc| · |Y c|

≥k
n
· |Xc| · |Y c| .

It follows that

k · |X|+ k · |Y |+ e(Xc, Y c) ≥k(|X|+ |Y |) +
k

n
(n− |X|)(n− |Y |)

≥k(|X|+ |Y |) + kn− k · |Y | − k · |X|+ k

n
· |X| · |Y |

≥kn .

Therefore, G has a k-factor, and thus at least (d − 2ε)nn! perfect matchings, as
stated.

Consider a random bipartite graph on two color classes of size n each, with edge
probability d (i.e. for two sets U = {u1, . . . , un} and V = {v1, . . . , vn}, the edge uivj
is added with probability d independently of the other choices). The expected degree
of such a graph is d, and the expected number of perfect matchings is dnn!. Moreover,
such a graph is ε-regular. Thus, Theorem 4 says that the number of perfect matching
of a super (d, ε)-regular graph is close to the expected number of perfect matchings
in a random bipartite graph. These ideas have been pushed further, and in particular
Rödl and Ruciński [21] managed to obtain a new proof of the Blow-up lemma of
Komlós, Sárközy and Szemerédi.

The condition for the existence of a k-factor that we used in the proof of Theorem 4
is a direct consequence of the max-flow/min-cut theorem, as we see next. A more
general version of this theorem (where the degree of the spanning subgraph at each
vertex is given by a function f) can be found in the book by Lovász and Plummer [17,
Theorem 2.4.2].

Theorem 5. Let G be a bipartite graph on 2n vertices with color classes U and V .
Then, G has a k-factor if and only if |U | = |V |, and for every X ⊆ U and every
Y ⊆ V ,

k · |X|+ k · |Y |+ e(Xc, Y c) ≥ kn .
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Proof. The fact that (1) holds if G has a k-factor can be directly checked. First, if
G has a k-factor H then |U | = |V | = n since the number of edges of H is equal to
k · |U | and to k · |V |. Let X ⊆ U and Y ⊆ V . There are kn edges of H between U
and V . Exactly k|Xc| of these edges have an endvertex in Xc and the other in V .
Among those edges from Xc to V , at most k · |Y | have an endvertex in Y . Thus,

kn = k · |X|+ k · |Xc| ≤ k · |X|+ k · |Y |+ eH(Xc, Y c) .

Consequently, (1) holds since eH(Xc, Y c) ≤ eG(Xc, Y c).
Conversely, assume that (1) holds and let us prove that G has a k-factor. Let

D be the oriented graph obtained from G by orienting each edge of G from U to V ,
adding a source s joined to all the vertices of U , and a sink t joined to all the vertices
of V (thus, s has out-degree |U | = n while t has in-degree |V | = n). Each arc from
U to V has capacity 1, while the other arcs all have capacity k. Observe that G has
a k-factor if and only if D has an (integral) flow of value kn (since |U | = |V | = n).
By the max-flow/min-cut theorem, D has such a flow if and only if every st-cut has
capacity at least kn. Let S be an st-cut, that is S is a set of vertices of D such that
s ∈ S and t /∈ S. Set X := U \ S and Y := V ∩ S. Then the capacity of S is
k · |X| + e(Xc, Y c) + k · |Y |, which is at least kn by hypothesis. This concludes the
proof.
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