Grafy a počty - NDMI078		April 2009
	Lecture 5	
M. Loebl		J.-S. Sereni

The goal of this lecture is to present how the entropy of random variables can be used to obtain bounds on the number of combinatorial objects. This is illustrated by a proof of Brègman's theorem found by Radhakrishnan in the late nineties [5].

1 Basics on the entropy

We only present some basics concepts about entropy. We refer to the books by McEliece [3, 4] for a nice exposition of the topic. Simonyi wrote a survey on graph entropy [6], and another one devoted to the links between graph entropy and perfect graphs [7].

We consider only finite discrete probabilistic spaces. A discrete probabilistic space is a pair (\mathscr{U}, p) where \mathscr{U} is a finite set and $p: \mathscr{U} \rightarrow[0,1]$ satisfies $\sum_{u \in \mathscr{U}} p(u)=1$. An event is a subset A of \mathscr{U}, and its probability is $\operatorname{Pr}(A):=\sum_{u \in A} p(u)$. A random variable is a mapping from \mathscr{U} to some set.

Let X be a random variable taking values in a set \mathscr{X}. The entropy of X is

$$
H(X):=\sum_{x \in \mathscr{X}} \operatorname{Pr}(X=x) \log \frac{1}{\operatorname{Pr}(X=x)}
$$

We let $0 \cdot \log (1 / 0):=0$ in the previous definition (or, alternately, we implicitly assume that the sum is taken only over the elements $x \in \mathscr{X}$ such that $P(X=x)>0)$.

The entropy can be sought as the amount of uncertainty the observer of a system is left with once (s)he knows that X has distribution Pr. This can be explained as follows. Let $A \subseteq \mathscr{X}$. We want to associate to A a real number I_{A} that can be interpreted as the amount of information in the claim " $X \in A$ ". If one requires that I_{A} is a continuous function of the probability $\operatorname{Pr}(X \in A)=\sum_{x \in A} \operatorname{Pr}(X=x)$ and that $I_{A \cap B}=I_{A}+I_{B}$ for any two independent events A and B (i.e. such that $p(X \in$ $A \cap B)=p(X \in A) \cdot p(X \in B))$, the only possible choice is $I_{A}=-\log \operatorname{Pr}(X \in A)$, where the logarithm can be taken to any base. The entropy of X thus models the average amount of information of the elementary claims $X=x$ for $x \in \mathscr{X}$.

Note that the values taken by X are not relevant, only the probabilities with which X takes those values are. Moreover, the image of X is a finite set (since \mathscr{U} is).

If X is a $0-1$ random variable being 0 with a fixed probability $p \in(0,1)$, then $\mathbf{E}(X)$ is the binary entropy function, i.e.

$$
\mathbf{E}(X)=H(p):=-p \log p-(1-p) \log (1-p)
$$

Let Y be a random variable taking values in a set \mathscr{Y}. The joint entropy of the two random variables X and Y is

$$
H(X, Y)=\sum_{\substack{x \in \mathscr{X} \\ y \in \mathscr{Y}}} \operatorname{Pr}(X=x, Y=y) \log \left(\frac{1}{\operatorname{Pr}(X=x, Y=y)}\right)
$$

We can condition the entropy of a random variable on a particular observation, or more generally on the outcome of another random variable. The conditional entropy of X given that $Y=y$ is

$$
H(X \mid Y=y)=\sum_{x \in \mathscr{X}} \operatorname{Pr}(X=x \mid Y=y) \log \left(\frac{1}{\operatorname{Pr}(X=x \mid Y=y)}\right)
$$

The conditional entropy of X given Y is the average of the preceding, i.e.

$$
\begin{aligned}
H(X \mid Y): & =\sum_{y \in \mathscr{Y}} \operatorname{Pr}(Y=y) H(X \mid Y=y) \\
& =\sum_{\substack{x \in \mathscr{\mathscr { V }} \\
y \in \mathscr{G}}} \operatorname{Pr}(X=x, Y=y) \log \left(\frac{1}{\operatorname{Pr}(X=x \mid Y=y)}\right) .
\end{aligned}
$$

Let us see some relations between those quantities.
Proposition 1. Let X and Y be two random variables taking values in \mathscr{X} and \mathscr{Y}, respectively.
(i) $H(X) \leq \log (|\mathscr{X}|)$ with equality if and only if X is uniformly distributed.
(ii) $H(X, Y)=H(X)+H(Y \mid X)$.
(iii) $H(X, Y) \leq H(X)+H(Y)$ with equality if and only if X and Y are independent.
(iv) $H(X \mid Y) \leq H(X)$ with equality if and only if X and Y are independent.

Before starting the proof, we recall that by Jensen's equality for concave functions,

$$
\begin{equation*}
\sum_{i} \alpha_{i} \log \left(\beta_{i}\right) \leq \log \left(\sum_{i} \alpha_{i} \beta_{i}\right) \tag{1}
\end{equation*}
$$

for all positive reals such that $\sum_{i} \alpha_{i}=1$. Moreover, there is equality if and only if $\beta_{i}=\beta_{j}$ for any i, j.

Proof of Proposition 1:

(i) Jensen's inequality implies that

$$
\begin{aligned}
H(X) & =\sum_{x \in \mathscr{X}} \operatorname{Pr}(X=x) \log \left(\frac{1}{\operatorname{Pr}(X=x)}\right) \\
& \leq \log \left(\sum_{x \in \mathscr{X}} \operatorname{Pr}(X=x) / \operatorname{Pr}(X=x)\right) \\
& =\log (|\mathscr{X}|)
\end{aligned}
$$

with equality if and only if $\operatorname{Pr}(X=x)=\operatorname{Pr}\left(X=x^{\prime}\right)$ for all $x, x^{\prime} \in \mathscr{X}$, i.e. if and only if X is uniformly distributed.
(ii) Since $\operatorname{Pr}(X=x, Y=y)=\operatorname{Pr}(X=x) \cdot \operatorname{Pr}(Y=y \mid X=x)$ and $\operatorname{Pr}(X=x)=$ $\sum_{y \in Y} \operatorname{Pr}(X=x, Y=y)$, we deduce that

$$
\begin{aligned}
H(X, Y)-H(Y \mid X)= & \sum_{x, y} \operatorname{Pr}(X=x, Y=y) \log \left(\frac{1}{\operatorname{Pr}(X=x, Y=y)}\right) \\
& -\sum_{x, y} \operatorname{Pr}(X=x, Y=y) \log \left(\frac{1}{\operatorname{Pr}(Y=y \mid X=x)}\right) \\
= & \sum_{x, y} \operatorname{Pr}(X=x, Y=y) \log \left(\frac{\operatorname{Pr}(X=x, Y=y)}{\operatorname{Pr}(X=x) \cdot \operatorname{Pr}(X=x, Y=y)}\right) \\
= & \sum_{x \in \mathscr{X}} \log \left(\frac{1}{\operatorname{Pr}(X=x)}\right) \cdot \sum_{y \in \mathscr{Y}} \operatorname{Pr}(X=x, Y=y) \\
= & H(X) .
\end{aligned}
$$

(iii) Since $\operatorname{Pr}(X=x)=\sum_{y \in \mathscr{Y}} \operatorname{Pr}(X=x, Y=y)$,

$$
H(X)+X(Y)=-\sum_{x, y} \operatorname{Pr}(X=x, Y=y) \log (\operatorname{Pr}(X=x) \cdot \operatorname{Pr}(Y=y))
$$

Consequently, using Jensen's inequality we obtain

$$
\begin{aligned}
H(X, Y)-(H(X)+H(Y)) & =\sum_{x, y} \operatorname{Pr}(X=x, Y=y) \log \left(\frac{\operatorname{Pr}(X=x) \cdot \operatorname{Pr}(Y=y)}{\operatorname{Pr}(X=x, Y=y)}\right) \\
& \leq \log \left(\sum_{x, y} \operatorname{Pr}(X=x) \cdot \operatorname{Pr}(Y=y)\right) \\
& =\log 1=0,
\end{aligned}
$$

with equality if and only if X and Y are independent.
(iv) By (ii) and (iii)

$$
H(X \mid Y)-H(X)=H(X, Y)-H(Y)-H(X) \leq 0
$$

with equality if and only if X and Y are independent.
By induction, (1) generalises to the so-called chain rule, i.e.

$$
\begin{equation*}
H\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\sum_{i=1}^{n} H\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right) \tag{2}
\end{equation*}
$$

We end by presenting a useful lemma [1] with a small application. If $X=\left(X_{i}\right)_{i \in \mathscr{I}}$ is a vector and A a subset of \mathscr{I}, we set $X_{A}:=\left(X_{i}\right)_{i \in A}$.

Lemma 2 (Shearer, 1986). Let $X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ be a random variable and let $\mathscr{A}=\left\{A_{i}\right\}_{i \in \mathscr{I}}$ be a collection of subsets of $\{1,2, \ldots, n\}$ such that each integer $i \in\{1,2, \ldots, n\}$ belongs to at least k sets of \mathscr{A}. Then

$$
H(X) \leq \frac{1}{k} \sum_{i \in \mathscr{I}} H\left(X_{A_{i}}\right)
$$

Proof. By the chain rule, $H(X)=\sum_{i=1}^{n} H\left(X_{i} \mid X_{j}: j<i\right)$. On the other hand, for each $i \in \mathscr{I}$,

$$
\begin{aligned}
H\left(X_{A_{i}}\right) & =\sum_{j \in A_{i}} H\left(X_{j} \mid X_{s}: s<j \text { and } s \in A_{i}\right) \\
& \geq \sum_{j \in A_{i}} H\left(X_{j} \mid X_{s}: s<j\right)
\end{aligned}
$$

by Proposition $1(i v)$. Summing the last inequality over all indices $i \in \mathscr{I}$, we obtain

$$
\begin{aligned}
\sum_{i \in \mathscr{I}} H\left(X_{A_{i}}\right) & \geq \sum_{i \in \mathscr{I}} \sum_{j \in A_{i}} H\left(X_{j} \mid X_{s}: s<j\right) \\
& \geq k \cdot \sum_{j=1}^{n} H\left(X_{j} \mid X_{s}: s<j\right) \\
& =k \cdot H(X)
\end{aligned}
$$

The following geometric proposition illustrates the use of entropy to obtain bounds via Shearer's lemma.

Proposition 3. Let $\mathscr{P}_{1}, \mathscr{P}_{2}$ and \mathscr{P}_{3} be the hyperplanes $(x, y),(x, z)$ and (y, z) of \mathbf{R}^{3}, respectively. If n points of \mathbf{R}^{3} are have exactly n_{i} different projections on \mathscr{P}_{i} for $i \in\{1,2,3\}$, then

$$
n_{1} n_{2} n_{3} \geq n^{2}
$$

Proof. Let us choose uniformly at random a point among the n points given. We consider the random variable $P=(X, Y, Z)$ corresponding to the three coordinates of the chosen point. By Proposition $1(i)$, it holds that $H(P)=\log n$. Let us consider the sets $A_{i}:=\{i, i+1\}$ for $i \in\{1,2\}$ and the set $A_{3}:=\{1,3\}$. Every index is in two of the three sets, thus Shearer's lemma implies that

$$
2 \cdot H(P) \leq H(X)+H(Y)+H(Z) \leq \log n_{1}+\log n_{2}+\log n_{3} .
$$

Therefore, $2 \cdot \log n \leq \log n_{1}+\log n_{2}+\log n_{3}$, i.e. $n^{2} \leq n_{1} n_{2} n_{3}$.

2 Radhakrishnan's proof of Brègman's theorem

Let us state Brègman's theorem in terms of the number of perfect matchings in a bipartite graph.

Theorem 4 (Brègman, 1973). Let G be a bipartite graph with parts A and B. The number of perfect matchings of G is at most

$$
\prod_{v \in A}(\operatorname{deg}(v)!)^{1 / \operatorname{deg}(v)}
$$

Proof. Let G be a bipartite graph with parts A and B. We define \mathscr{M} to be the set of all the perfect matchings of G, and we suppose that $\mathscr{M} \neq \emptyset$, otherwise the statement of the theorem holds trivially. In particular, $|A|=|B|$; let us set $n:=|A|$. For a perfect matching M and a vertex $a \in A$, we let $M(a)$ be the vertex of B that is adjacent to a in M. Further, for every vertex $b \in B$, we let $M^{-1}(b)$ be the vertex of A that is adjacent to b in M.

We choose a perfect matching $M \in \mathscr{M}$ uniformly at random. Thus, $\log |\mathscr{M}|=$ $H(M)$. Let $a_{1}, a_{2}, \ldots, a_{n}$ be an ordering of the vertices of A. Then, by the chain rule (2),

$$
\begin{align*}
H(M)= & H\left(M\left(a_{1}\right)\right)+H\left(M\left(a_{2}\right) \mid M\left(a_{1}\right)\right) \\
& +\ldots+H\left(M\left(a_{n}\right) \mid M\left(a_{1}\right), M\left(a_{2}\right), \ldots, M\left(a_{n-1}\right)\right) . \tag{3}
\end{align*}
$$

Note that this equation yields the trivial upper bound $|\mathscr{M}| \leq \prod_{a \in A} \operatorname{deg}(a)$. Indeed, the conditional entropy of $M\left(a_{i}\right)$ given $M\left(a_{1}\right), M\left(a_{2}\right), \ldots, M\left(a_{i-1}\right)$ is at most the entropy of $M\left(a_{i}\right)$ (by Proposition $1(i v)$), which in turn is at most $\log \operatorname{deg}\left(a_{i}\right)$ (by Proposition $1(i)$). We would obtain a better upper bound on $|\mathscr{M}|$ if we manage to infer a better upper bound on $H\left(M\left(a_{i}\right) \mid M\left(a_{1}\right), M\left(a_{2}\right), \ldots, M\left(a_{i-1}\right)\right)$.

To this end, note that the range of $M\left(a_{i}\right)$ given $M\left(a_{j}\right)$ for $j \in\{1,2, \ldots, i-1\}$ is actually contained in $N_{G}\left(a_{i}\right) \backslash\left\{M\left(a_{1}\right), M\left(a_{2}\right), \ldots, M\left(a_{i-1}\right)\right\}$. So, it may well be smaller than $\operatorname{deg}\left(a_{i}\right)$. Moreover, its size depends on the ordering chosen for the vertices of A.

To exploit this remark, let σ be a permutation of $\{1,2, \ldots, n\}$, chosen uniformly at random. For each index $i \in\{1,2, \ldots, n\}$, we set

$$
R_{i}(M, \sigma):=\left|N_{G}\left(a_{i}\right) \backslash\left\{M\left(a_{\sigma(1)}\right), \ldots, M\left(a_{\sigma(k-1)}\right)\right\}\right|
$$

with $k:=\sigma^{-1}(i)$. Observe that, for every integer $j \in\left\{1,2, \ldots, \operatorname{deg}\left(a_{i}\right)\right\}$,

$$
\begin{equation*}
\underset{M, \sigma}{\operatorname{Pr}_{r}}\left(R_{i}(M, \sigma)=j\right)=\frac{1}{\operatorname{deg}\left(a_{i}\right)} \tag{4}
\end{equation*}
$$

Indeed, for any fixed matching M,

$$
\begin{equation*}
\underset{\sigma}{\operatorname{Pr}}\left(R_{i}(M, \sigma)=j \mid M\right)=\frac{1}{\operatorname{deg}\left(a_{i}\right)} \tag{5}
\end{equation*}
$$

since σ is chosen uniformly at random. In fact, (5) can also be proved, for instance, by counting directly: the number of permutations such that $\alpha=\operatorname{deg}\left(a_{i}\right)-j$ vertices of $M^{-1}\left(N_{G}\left(a_{i}\right)\right)$ occur before a_{i} is

$$
\begin{aligned}
& \sum_{k=1}^{n}\binom{\operatorname{deg}\left(a_{i}\right)-1}{\alpha}\binom{n-\operatorname{deg}\left(a_{i}\right)}{k-\alpha-1}(k-1)!(n-k)! \\
= & \left(\operatorname{deg}\left(a_{i}\right)-1\right)!\left(n-\operatorname{deg}\left(a_{i}\right)\right)!\cdot \sum_{k=1}^{n}\binom{k-1}{\alpha}\binom{n-k}{\operatorname{deg}\left(a_{i}\right)-\alpha-1} \\
= & \frac{n!}{\operatorname{deg}\left(a_{i}\right) \cdot\binom{n}{\operatorname{deg}\left(a_{i}\right)}} \cdot \sum_{k=0}^{n-1}\binom{k}{\alpha}\binom{n-1-k}{\operatorname{deg}\left(a_{i}\right)-\alpha-1} \\
= & \frac{n!}{\operatorname{deg}\left(a_{i}\right)},
\end{aligned}
$$

where the last line follows from the following classical binomial identity [2, p. 129].

$$
\sum_{k=0}^{n-1}\binom{k}{j}\binom{n-1-k}{d-j-1}=\binom{n}{d}
$$

Now, (5) implies (4) by averaging over all $M \in \mathscr{M}$, i.e.

$$
\operatorname{Pr}_{M, \sigma}\left(R_{i}(M, \sigma)=j\right)=\sum_{M} \operatorname{Pr}(M) \cdot \operatorname{Pr}_{\sigma}\left(R_{i}(M, \sigma)=j \mid M\right)=\frac{1}{\operatorname{deg}\left(a_{i}\right)}
$$

On the other hand, applying Proposition $1(i)$, we obtain

$$
\begin{equation*}
H\left(M\left(a_{i}\right) \mid M\left(a_{\sigma(1)}\right), \ldots, M\left(a_{\sigma\left(\sigma^{-1}(i)-1\right)}\right)\right) \leq \sum_{j=1}^{\operatorname{deg}\left(a_{i}\right)} \operatorname{Pr}_{M}\left(R_{i}(M, \sigma)=j\right) \cdot \log j \tag{6}
\end{equation*}
$$

Furthermore, (3) translates to

$$
\begin{align*}
H(M)= & H\left(M\left(a_{\sigma(1)}\right)\right)+H\left(M\left(a_{\sigma(2)}\right) \mid M\left(a_{\sigma(1)}\right)\right) \\
& +\ldots+H\left(M\left(a_{\sigma(n)}\right) \mid M\left(a_{\sigma(1)}\right), M\left(a_{\sigma(2)}\right), \ldots, M\left(a_{\sigma(n-1)}\right)\right) . \tag{7}
\end{align*}
$$

Summing (7) over all the permutations σ, we obtain

$$
n!H(M)=\sum_{\sigma} \sum_{i=1}^{n} H\left(M\left(a_{\sigma(i)}\right) \mid M\left(a_{\sigma(1)}\right), \ldots, M\left(a_{\sigma(i-1)}\right)\right),
$$

i.e.

$$
H(M)=\underset{\sigma}{\mathbf{E}}\left[\sum_{i=1}^{n} H\left(M\left(a_{\sigma(i)}\right) \mid M\left(a_{\sigma(1)}\right), \ldots, M\left(a_{\sigma(i-1)}\right)\right)\right]
$$

We write the terms of the sum in a different order, and use the linearity of Expectation.

$$
\begin{align*}
H(M) & =\sum_{i=1}^{n} \underset{\sigma}{\mathbf{E}}\left[H\left(M\left(a_{i}\right) \mid M\left(a_{\sigma(1)}\right), \ldots, M\left(a_{\sigma\left(\sigma^{-1}(i)-1\right)}\right)\right)\right] \\
& \leq \sum_{i=1}^{n} \underset{\sigma}{\mathbf{E}}\left[\sum_{j=1}^{\operatorname{deg}\left(a_{i}\right)} \underset{M}{\operatorname{Pr}}\left(R_{i}(M, \sigma)=j\right) \cdot \log j\right] \tag{6}\\
& =\sum_{i=1}^{n} \sum_{j=1}^{\operatorname{deg}\left(a_{i}\right)} \sum_{\sigma} \operatorname{Pr}(\sigma) \underset{M}{\operatorname{Pr}}\left(R_{i}(M, \sigma)=j\right) \cdot \log j .
\end{align*}
$$

Observe that

$$
\sum_{\sigma} \operatorname{Pr}(\sigma) \operatorname{Pr}_{M}\left(R_{i}(M, \sigma)=j\right)=\operatorname{Pr}_{M, \sigma}\left(R_{i}(M, \sigma)=j\right) .
$$

Thus, (4) implies that

$$
\begin{aligned}
H(M) & \leq \sum_{i=1}^{n} \sum_{j=1}^{\operatorname{deg}\left(a_{i}\right)} \frac{1}{\operatorname{deg}\left(a_{i}\right)} \cdot \log j \\
& =\sum_{i=1}^{n} \log \left(\operatorname{deg}\left(a_{i}\right)!\right)^{1 / \operatorname{deg}\left(a_{i}\right)},
\end{aligned}
$$

which concludes the proof.
We conclude by explicitly stating some key points when trying to bound the size of a set \mathscr{M} using entropy. We choose an element M of \mathscr{M} uniformly at random, so that $H(M)=\log |\mathscr{M}|$. The goal is then to bound the entropy. To this end, the chain rule and Shearer's lemma are crucial tools.

References

[1] F. R. K. Chung, R. L. Graham, P. Frankl, and J. B. Shearer. Some intersection theorems for ordered sets and graphs. J. Combin. Theory Ser. A, 43(1):23-37, 1986.
[2] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete mathematics. AddisonWesley Publishing Company Advanced Book Program, Reading, MA, 1989. A foundation for computer science.
[3] R. J. McEliece. The theory of information and coding, volume 86 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, second edition, 2002.
[4] R. J. McEliece. The theory of information and coding, volume 86 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, student edition, 2004. With a foreword by Mark Kac.
[5] J. Radhakrishnan. An entropy proof of Bregman's theorem. J. Combin. Theory Ser. $A, 77(1): 161-164,1997$.
[6] G. Simonyi. Graph entropy: a survey. In Combinatorial optimization (New Brunswick, NJ, 1992-1993), volume 20 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pages 399-441. Amer. Math. Soc., Providence, RI, 1995.
[7] G. Simonyi. Perfect graphs and graph entropy. An updated survey. In Perfect graphs, Wiley-Intersci. Ser. Discrete Math. Optim., pages 293-328. Wiley, Chichester, 2001.

