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Lecture 5
M. Loebl J.-S. Sereni

The goal of this lecture is to present how the entropy of random variables can be
used to obtain bounds on the number of combinatorial objects. This is illustrated by
a proof of Brègman’s theorem found by Radhakrishnan in the late nineties [5].

1 Basics on the entropy

We only present some basics concepts about entropy. We refer to the books by
McEliece [3, 4] for a nice exposition of the topic. Simonyi wrote a survey on graph
entropy [6], and another one devoted to the links between graph entropy and perfect
graphs [7].

We consider only finite discrete probabilistic spaces. A discrete probabilistic space
is a pair (U , p) where U is a finite set and p : U → [0, 1] satisfies

∑
u∈U p(u) = 1.

An event is a subset A of U , and its probability is Pr(A) :=
∑

u∈A p(u). A random
variable is a mapping from U to some set.

Let X be a random variable taking values in a set X . The entropy of X is

H(X) :=
∑
x∈X

Pr(X = x) log
1

Pr(X = x)
.

We let 0 · log(1/0) := 0 in the previous definition (or, alternately, we implicitly assume
that the sum is taken only over the elements x ∈X such that P (X = x) > 0).

The entropy can be sought as the amount of uncertainty the observer of a system
is left with once (s)he knows that X has distribution Pr. This can be explained
as follows. Let A ⊆ X . We want to associate to A a real number IA that can be
interpreted as the amount of information in the claim “X ∈ A”. If one requires that
IA is a continuous function of the probability Pr(X ∈ A) =

∑
x∈A Pr(X = x) and

that IA∩B = IA + IB for any two independent events A and B (i.e. such that p(X ∈
A ∩ B) = p(X ∈ A) · p(X ∈ B)), the only possible choice is IA = − log Pr(X ∈ A),
where the logarithm can be taken to any base. The entropy of X thus models the
average amount of information of the elementary claims X = x for x ∈X .

Note that the values taken by X are not relevant, only the probabilities with which
X takes those values are. Moreover, the image of X is a finite set (since U is).

If X is a 0-1 random variable being 0 with a fixed probability p ∈ (0, 1), then
E(X) is the binary entropy function, i.e.

E(X) = H(p) := −p log p− (1− p) log(1− p) .
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Let Y be a random variable taking values in a set Y . The joint entropy of the
two random variables X and Y is

H(X, Y ) =
∑
x∈X
y∈Y

Pr(X = x, Y = y) log

(
1

Pr(X = x, Y = y)

)
.

We can condition the entropy of a random variable on a particular observation, or
more generally on the outcome of another random variable. The conditional entropy
of X given that Y = y is

H(X|Y = y) =
∑
x∈X

Pr (X = x|Y = y) log

(
1

Pr (X = x|Y = y)

)
.

The conditional entropy of X given Y is the average of the preceding, i.e.

H(X|Y ) :=
∑
y∈Y

Pr(Y = y)H(X|Y = y)

=
∑
x∈X
y∈Y

Pr (X = x, Y = y) log

(
1

Pr (X = x|Y = y)

)
.

Let us see some relations between those quantities.

Proposition 1. Let X and Y be two random variables taking values in X and Y ,
respectively.

(i) H(X) ≤ log(|X |) with equality if and only if X is uniformly distributed.

(ii) H(X, Y ) = H(X) +H(Y |X).

(iii) H(X, Y ) ≤ H(X)+H(Y ) with equality if and only if X and Y are independent.

(iv) H(X|Y ) ≤ H(X) with equality if and only if X and Y are independent.

Before starting the proof, we recall that by Jensen’s equality for concave functions,

∑
i

αi log(βi) ≤ log

(∑
i

αiβi

)
(1)

for all positive reals such that
∑

i αi = 1. Moreover, there is equality if and only if
βi = βj for any i, j.
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Proof of Proposition 1:
(i) Jensen’s inequality implies that

H(X) =
∑
x∈X

Pr(X = x) log

(
1

Pr(X = x)

)

≤ log

(∑
x∈X

Pr(X = x)/Pr(X = x)

)
= log(|X |) ,

with equality if and only if Pr(X = x) = Pr(X = x′) for all x, x′ ∈ X , i.e. if and
only if X is uniformly distributed.
(ii) Since Pr(X = x, Y = y) = Pr(X = x) · Pr(Y = y|X = x) and Pr(X = x) =∑

y∈Y Pr(X = x, Y = y), we deduce that

H(X, Y )−H(Y |X) =
∑
x,y

Pr(X = x, Y = y) log

(
1

Pr(X = x, Y = y)

)
−
∑
x,y

Pr(X = x, Y = y) log

(
1

Pr(Y = y|X = x)

)
=
∑
x,y

Pr(X = x, Y = y) log

(
Pr(X = x, Y = y)

Pr(X = x) ·Pr(X = x, Y = y)

)
=
∑
x∈X

log

(
1

Pr(X = x)

)
·
∑
y∈Y

Pr(X = x, Y = y)

=H(X) .

(iii) Since Pr(X = x) =
∑

y∈Y Pr(X = x, Y = y),

H(X) +X(Y ) = −
∑
x,y

Pr(X = x, Y = y) log (Pr(X = x) ·Pr(Y = y)) .

Consequently, using Jensen’s inequality we obtain

H(X, Y )− (H(X) +H(Y )) =
∑
x,y

Pr(X = x, Y = y) log

(
Pr(X = x) ·Pr(Y = y)

Pr(X = x, Y = y)

)

≤ log

(∑
x,y

Pr(X = x) ·Pr(Y = y)

)
= log 1 = 0 ,

with equality if and only if X and Y are independent.
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(iv) By (ii) and (iii)

H(X|Y )−H(X) = H(X, Y )−H(Y )−H(X) ≤ 0 ,

with equality if and only if X and Y are independent. �
By induction, (1) generalises to the so-called chain rule, i.e.

H(X1, X2, . . . , Xn) =
n∑
i=1

H(Xi|X1, . . . , Xi−1) . (2)

We end by presenting a useful lemma [1] with a small application. If X = (Xi)i∈I

is a vector and A a subset of I , we set XA := (Xi)i∈A.

Lemma 2 (Shearer, 1986). Let X = (X1, X2, . . . , Xn) be a random variable and
let A = {Ai}i∈I be a collection of subsets of {1, 2, . . . , n} such that each integer
i ∈ {1, 2, . . . , n} belongs to at least k sets of A . Then

H(X) ≤ 1

k

∑
i∈I

H (XAi
) .

Proof. By the chain rule, H(X) =
∑n

i=1H(Xi|Xj : j < i). On the other hand, for
each i ∈ I ,

H(XAi
) =

∑
j∈Ai

H(Xj|Xs : s < j and s ∈ Ai)

≥
∑
j∈Ai

H(Xj|Xs : s < j) ,

by Proposition 1(iv). Summing the last inequality over all indices i ∈ I , we obtain∑
i∈I

H (XAi
) ≥

∑
i∈I

∑
j∈Ai

H(Xj|Xs : s < j)

≥k ·
n∑
j=1

H(Xj|Xs : s < j)

=k ·H(X) .

The following geometric proposition illustrates the use of entropy to obtain bounds
via Shearer’s lemma.

Proposition 3. Let P1,P2 and P3 be the hyperplanes (x, y), (x, z) and (y, z) of
R3, respectively. If n points of R3 are have exactly ni different projections on Pi for
i ∈ {1, 2, 3}, then

n1n2n3 ≥ n2 .
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Proof. Let us choose uniformly at random a point among the n points given. We
consider the random variable P = (X, Y, Z) corresponding to the three coordinates
of the chosen point. By Proposition 1(i), it holds that H(P ) = log n. Let us consider
the sets Ai := {i, i+ 1} for i ∈ {1, 2} and the set A3 := {1, 3}. Every index is in two
of the three sets, thus Shearer’s lemma implies that

2 ·H(P ) ≤ H(X) +H(Y ) +H(Z) ≤ log n1 + log n2 + log n3 .

Therefore, 2 · log n ≤ log n1 + log n2 + log n3, i.e. n2 ≤ n1n2n3.

2 Radhakrishnan’s proof of Brègman’s theorem

Let us state Brègman’s theorem in terms of the number of perfect matchings in a
bipartite graph.

Theorem 4 (Brègman, 1973). Let G be a bipartite graph with parts A and B. The
number of perfect matchings of G is at most∏

v∈A

(deg(v)!)1/ deg(v) .

Proof. Let G be a bipartite graph with parts A and B. We define M to be the set of
all the perfect matchings of G, and we suppose that M 6= ∅, otherwise the statement
of the theorem holds trivially. In particular, |A| = |B|; let us set n := |A|. For a
perfect matching M and a vertex a ∈ A, we let M(a) be the vertex of B that is
adjacent to a in M . Further, for every vertex b ∈ B, we let M−1(b) be the vertex of
A that is adjacent to b in M .

We choose a perfect matching M ∈ M uniformly at random. Thus, log |M | =
H(M). Let a1, a2, . . . , an be an ordering of the vertices of A. Then, by the chain
rule (2),

H(M) =H(M(a1)) +H(M(a2)|M(a1))

+ . . .+H(M(an)|M(a1),M(a2), . . . ,M(an−1)) . (3)

Note that this equation yields the trivial upper bound |M | ≤
∏

a∈A deg(a). Indeed,
the conditional entropy of M(ai) given M(a1),M(a2), . . . ,M(ai−1) is at most the
entropy of M(ai) (by Proposition 1(iv)), which in turn is at most log deg(ai) (by
Proposition 1(i)). We would obtain a better upper bound on |M | if we manage to
infer a better upper bound on H(M(ai)|M(a1),M(a2), . . . ,M(ai−1)).

To this end, note that the range of M(ai) given M(aj) for j ∈ {1, 2, . . . , i − 1}
is actually contained in NG(ai) \ {M(a1),M(a2), . . . ,M(ai−1)}. So, it may well be
smaller than deg(ai). Moreover, its size depends on the ordering chosen for the
vertices of A.
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To exploit this remark, let σ be a permutation of {1, 2, . . . , n}, chosen uniformly
at random. For each index i ∈ {1, 2, . . . , n}, we set

Ri(M,σ) := |NG(ai) \ {M(aσ(1)), . . . ,M(aσ(k−1))}| ,

with k := σ−1(i). Observe that, for every integer j ∈ {1, 2, . . . , deg(ai)},

Pr
M,σ

(Ri(M,σ) = j) =
1

deg(ai)
. (4)

Indeed, for any fixed matching M ,

Pr
σ

(Ri(M,σ) = j|M) =
1

deg(ai)
, (5)

since σ is chosen uniformly at random. In fact, (5) can also be proved, for instance,
by counting directly: the number of permutations such that α = deg(ai)− j vertices
of M−1(NG(ai)) occur before ai is

n∑
k=1

(
deg(ai)− 1

α

)(
n− deg(ai)

k − α− 1

)
(k − 1)!(n− k)!

=(deg(ai)− 1)!(n− deg(ai))! ·
n∑
k=1

(
k − 1

α

)(
n− k

deg(ai)− α− 1

)

=
n!

deg(ai) ·
(

n

deg(ai)

) · n−1∑
k=0

(
k

α

)(
n− 1− k

deg(ai)− α− 1

)

=
n!

deg(ai)
,

where the last line follows from the following classical binomial identity [2, p. 129].

n−1∑
k=0

(
k

j

)(
n− 1− k
d− j − 1

)
=

(
n

d

)
.

Now, (5) implies (4) by averaging over all M ∈M , i.e.

Pr
M,σ

(Ri(M,σ) = j) =
∑
M

Pr(M) ·Pr
σ

(Ri(M,σ) = j|M) =
1

deg(ai)
.

On the other hand, applying Proposition 1(i), we obtain

H(M(ai)|M(aσ(1)), . . . ,M(aσ(σ−1(i)−1))) ≤
deg(ai)∑
j=1

Pr
M

(Ri(M,σ) = j) · log j . (6)
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Furthermore, (3) translates to

H(M) =H(M(aσ(1))) +H(M(aσ(2))|M(aσ(1)))

+ . . .+H(M(aσ(n))|M(aσ(1)),M(aσ(2)), . . . ,M(aσ(n−1))) . (7)

Summing (7) over all the permutations σ, we obtain

n!H(M) =
∑
σ

n∑
i=1

H
(
M(aσ(i))|M(aσ(1)), . . . ,M(aσ(i−1))

)
,

i.e.

H(M) =E
σ

[
n∑
i=1

H
(
M(aσ(i))|M(aσ(1)), . . . ,M(aσ(i−1))

)]
.

We write the terms of the sum in a different order, and use the linearity of Expectation.

H(M) =
n∑
i=1

E
σ

[
H
(
M(ai)|M(aσ(1)), . . . ,M(aσ(σ−1(i)−1))

)]
≤

n∑
i=1

E
σ

deg(ai)∑
j=1

Pr
M

(Ri(M,σ) = j) · log j

 by (6)

=
n∑
i=1

deg(ai)∑
j=1

∑
σ

Pr(σ)Pr
M

(Ri(M,σ) = j) · log j .

Observe that ∑
σ

Pr(σ)Pr
M

(Ri(M,σ) = j) = Pr
M,σ

(Ri(M,σ) = j) .

Thus, (4) implies that

H(M) ≤
n∑
i=1

deg(ai)∑
j=1

1

deg(ai)
· log j

=
n∑
i=1

log (deg(ai)!)
1/ deg(ai) ,

which concludes the proof.

We conclude by explicitly stating some key points when trying to bound the size
of a set M using entropy. We choose an element M of M uniformly at random, so
that H(M) = log |M |. The goal is then to bound the entropy. To this end, the chain
rule and Shearer’s lemma are crucial tools.
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