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Lecture 7
M. Loebl J.-S. Sereni

This lecture deals with some aspects of plane triangulations: we introduce 3-
orientations and Schnyder woods, and we give an algorithm to build such structures.
We mainly rely on the original paper by Schnyder [8] and the Diploma Thesis of
Brehm [4].

1 3-orientations

Let G be a plane triangulation. An inner vertex of G is a vertex that is not incident
with the outer face. An outer vertex is a vertex incident with the outer face. An
inner edge is an edge that is not incident with the outer face (thus, an inner edge is
incident with at least one inner vertex). An outer edge is an edge incident with the
outer face.

Definition 1. Let G be a plane triangulation. A 3-orientation of G is an orientation
of the inner edges of G in which every inner vertex has out-degree 3.

Let G be a plane triangulation with a 3-orientation. A straightforward conse-
quence of the definition of a 3-orientation is that the outer vertices have out-degree
0. To see this, first note that a plane triangulation on n vertices has exactly 3n − 6
edges by Euler’s formula. Among those, there are 3 outer edges and hence 3n − 9
inner edges. Now, the sum of the out-degrees of the inner vertices equals the number
of inner edges, i.e. 3n− 9. Since there are n− 3 inner vertices and each of them has
out-degree 3, this yields the stated fact.

This simple observation extends to every triangle of G, not only the one bouding
the outer face. Moreover, the converse is also true, i.e. if C is a cycle of G such that
no arc inside C leaves a vertex of C, then C is a triangle (exercise).

2 Schnyder woods

A look at Figure 1 can help to read the following definition.

Definition 2. Given a plane triangulation T = (V, E), a Schnyder labelling of T is a

3-orientation
−→
T of T along with a 3-colouring of the inner arcs of

−→
T such that

• every vertex has exactly one outgoing arc of each colour in
−→
T ;

• the colours of the outgoing arcs around a vertex always appear in the same
clockwise order; and
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Figure 1: A Schnyder labelling of a plane triangulation.

• the incoming arcs of a given colour all appear between the outgoing arcs of the
other two colours.

It turns out that every plane triangulation has a Schnyder labelling [8]. We prove
this fact in the next section. To this end, we provide a linear-time algorithm to obtain
a Schnyder labelling of any given plane triangulation.

Before doing so, let us note the important corollary that the inner edges of any
plane triangulation can be partitionned into three disjoint trees that span all the inner
vertices, each rooted at a different outer vertex. Indeed, a Schnyder labelling defines
for every inner vertex a unique directed path to each of the three outer vertices (just
follow the out-going red arcs, the out-going blue arcs and the out-going green arcs to
obtain the three paths).

Such decompositions have a name: a 3-tree-decomposition of a plane triangulation
is a partition of its inner edges into three trees, each being rooted at a different outer
vertex and containing all inner vertices.

Thus, every 3-tree-decomposition defines for each inner vertex a unique path to
each outer vertex. Directing every inner edge towards the father (in the tree to which
it belongs) yields a 3-orientation of the considered triangulation.

We start with a preliminary straightforward lemma.

Lemma 1. Let G be an outerplane graph. Either G is a triangle, or G has two
non-adjacent vertices of degree at most 2.

Proof. First, observe that it suffices to prove the result for 2-connected outerplane
graphs (why?). So, let us assume that G is 2-connected. We define the weak dual
T of G to be the graph obtained from the geometric dual G∗ of G by removing the
vertex corresponding to the outerface of G. The lemma is true if G is a cycle, so we
assume that G is not a cycle. In particular, T has at least two vertices.

Let us show that T is a tree, which will yield the result. Indeed, T would have
at least two leaves (since T has at least two vertices). Every leaf f of T corresponds
to an inner face of G incident to at least one vertex of degree 2; furthermore, the
vertices of degree 2 belonging to different such faces cannot be adjacent in G. Thus
the lemma is proved provided we can show that T is a tree.
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Figure 2: A near-triangulation: removing the vertex v2 yields another near-
triangulation.

One can realise that T is a tree using the duality between cycles of a graph
and edge-cuts of its dual, as we saw in Lecture 1. We now give a proof using Euler’s
formula. Let N, E and F be the number of vertices, edges and faces of G, respectively.
The graph G∗ has F vertices and E edges. Let f be the vertex of G∗ corresponding
to the outerface of G. Since G is outerplanar, the degree of the vertex f in G∗ is
N . Consequently, the number of edges of T is E − N = F − 2 by Euler’s formula.
Since T has F − 1 vertices, this proves that T is a forest (and hence a tree, since G
is connected).

We repeatedly use the following observation (see Figure 2).

Observation 1. Let T = (V, E) be a 2-connected near-triangulation of the plane,
i.e. T is a plane graph all of which inner faces are triangles (but the outer face
may be a cycle of size greater than 3). Let v1, v2, . . . , vk be the outer cycle of T , in
clockwise order. Then, T − v2 is a 2-connected near-triangulation with outer cycle
v1, w1, . . . , wd, v3, . . . , vk, where w1, . . . , wd are the inner vertices of T adjacent to v2

in anti-clockwise order.

Consider a plane triangulation T = (V, E). We build a Schnyder labelling by
inductively labelling and directing the inner edges. Let u, v and w be the three outer
vertices of T , in clockwise order. At each step i ≥ 0 of the algorithm, we consider
a subgraph Ti of T , which is a 2-connected near-triangulation containing the edge
uw. We will choose an outer vertex vi of Ti different from u and w, such that vi has
exactly two neighbours that are outer vertices of Ti. Then, we orient and colour the
edges of Ti incident to vi, and set Ti+1 := Ti − vi. The exact procedure is described
below, and illustrated in Figure 3.

First, we set T0 := T and v0 := v. Then, for i = 0 upto n−3, we do the following.
The graph Ti is a subgraph of T , and Ti is a 2-connected near-triangulation con-

taining the edge uw. Note that if we delete all the inner vertices of Ti, we obtain a
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2-connected outerplane graph Oi. Thus, by Lemma 1, either Oi contains two non-
adjacent vertices of degree 2, or Oi is a triangle. In both cases, Oi contains a vertex
vi of degree 2 that is different from u and w. Thus, in Ti, the vertex vi has exactly
two neighbours xi and yi that are outer vertices of Ti. We design by xi the one that
is closer to u on the outer cycle of Ti; and thus yi is the one closer to w.

We orient all inner edges incident to vi towards vi, and we colour them red. We
orient the edge vix towards x and colour it blue. Then, we orient the edge viy towards
y and colour it green. These two steps are ignored when i = 0, since it would amount
to colour and orient the outer edges of T , which is not needed for us. Last, we set
Ti+1 := Ti− vi. If i < n− 3, the graph Ti+1 is a 2-connected near-triangulation of the
plane by Observation 1, which contains the edge uw. We end the “for” loop.

Let us pause here to make some remarks.

• Another termination condition, which does not involve the number of vertices,
is to end as soon as i > 0, xi = u and yi = w.

• The algorithm is linear in time, even if no embedding is given since determining
whether a graph is planar and finding a planar embedding can be done in linear
time (consult [3, 5, 6, 10] to read more about this interesting topic).

• The procedure can be used to determine all possible Schnyder labellings of a
plane triangulation (see the original paper [8]). In particular, there usually are
more than one choice for the vertex vi: according to how the choice is made
the obtained Schnyder labelling can have some desirable properties, e.g. no
clockwise cycle (see the thesis of Brehm [4]).

Let us show that the structure built by the algorithm is indeed a Schnyder labelling
of T . To this end, let us state some invariants that are satisfied throughout the
procedure. We first give some definitions. Let r be an outer vertex of Ti different
from u and w. Say that the outer face of Ti is bounded by the (non-necessarliy
induced) cycle r0 = u, r1, . . . , rk = w. For i /∈ {0, k}, the left neighbour of ri is ri−1,
and the right neighbour of ri is ri+1. If a and b are two edges incident with a vertex
r, by clockwise between a and b we mean: start from a and walk clockwise towards b.
We use anti-clockwise between in an analoguous way.

During the procedure, the following holds at the end of each step i ≥ 0.

• the edges of Ti+1 are neither coloured nor oriented;

• every vertex vj with j < i has exactly one blue out-going arc and one green
out-going arc. All edges couter-clockwise between those two arcs are red and
in-coming;

• every outer vertex r of Ti+1 has exactly one out-going red arc ~a except u and
w; further letting x and y be r’s left and right neigbhours on the outer face of
Ti+1 respectively, all edges anti-clockwise between ~a and rx are green in-coming
arcs, and all edges clockwise between ~a and ry are blue in-coming arcs.
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Figure 3: Schnyder’s algorithm.
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Assuming these invariants hold, the procedure yields a Schnyder labelling of T
since each inner vertex of T is chosen as one of the vertices vi for some i ∈ {1, 2, . . . , n−
3}, and the out-going blue and green arcs of vi are its left and right neighbours on
the outerface of Ti+1, respectively.

It remains to prove that the invariants stated above hold. This is true when i = 0:
at the end of step 0, only the inner edges incident to v0 = v are oriented and/or
coloured, thus no edge of T1 = T − v is oriented or coloured. Further, an outer vertex
of T1 distinct from u and w is necessarily an inner neighbour of v in T and hence has
an out-going red arc. The other statements hold trivially.

Suppose now that the invariants are satisfied until step i−1 for some i ∈ {1, . . . , n−
3}, and let us show that they still hold at the end of step i. First, all edges that get
oriented and coloured during step i are incident to vi. Thus, since Ti+1 = Ti − vi

we deduce that no edge of Ti+1 is coloured or oriented at the end of step i. Further,
a vertex received a new incoming red arc during step i if and only if it is an inner
vertex of Ti adjacent to vi. So, if r is an outer vertex of Ti+1 distinct from u and
w, then either r is an inner vertex of Ti adjacent to vi, or r is an outer vertex of Ti

(distinct from u and w). In the former case, r had exaclty one out-going red arc at
the end of step i − 1 and receives no such arc during step i. In the latter case, no
edge incident to r was coloured or oriented at the end of step i − 1, and r received
exactly one out-going red arc during step i.

During step i, only vi receives an out-going blue or green arc, and vi receives
exactly one such arc. Moreover, vi does not receive any blue or green in-coming arc
at any step j with j ≥ i, since during step j only xj and yj receive such arcs, and
then they belong to the outer cycle of Tj and are distinct from vj.

As a result, when vi receives its out-going blue arc, it already received all its in-
coming green arcs. Moreover, all the in-coming green arcs are anti-clockwise between
the out-going red arc and the out-going blue arc (recall that the red arc out-going
form vj goes to an outer vertex of Ti−1). A similar argument shows that all blue-
incoming arcs are clockwise between the out-going red arc and the out-going green
arc. Last, vi receives incoming red arcs only during step i, and all the arcs come from
inner vertices of Ti. Since xi and yi are outer vertices of Ti, we infer that all these
arcs are clockwise between the green arc vi → yi and the blue arc vi → xi, as wanted.

We conclude with a (non-exhaustive and short) list of possible applications of
Schnyder labellings.

• Schnyder’s theorem [9], stating that a graph G is planar if and only if its associ-
ated poset P (G) has dimension at most 3 (P (G) is defined as the partial order
with ground set V (G) ∪ E(G), and x < y if and only if x ∈ V (G), y ∈ E(G)
and y is incident to x in G).

• Graph drawing [2].

• Coding [1, 7].
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