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Lecture 8
M. Loebl J.-S. Sereni

1 Introduction

We focus on the already mentioned conjecture of Lovász and Plummer regarding the
growth of the number of perfect matchings in bridgeless cubic graphs.

Conjecture 1 (Lovász and Plummer, mid-1970s). The number of perfect matchings
in a bridgeless cubic graph on n vertices is 2Ω(n).

We briefly mentioned the results known in Lecture 4, and we now consider the
conjecture restricted to planar graphs. Chudnovsky and Seymour managed to obtain
the following theorem.

Theorem 1 (Chudnovsky and Seymour, 2008). Every bridgeless cubic planar graph
on n vertices contains at least 2n/655978752 perfect matchings.

To prove Theorem 1, Chudnovsky and Seymour first consider the case where the
graph is cyclically 4-connected. Next, they obtain the result for all (bridgeless cubic)
planar graphs. In the next lecture, we will see the proof of Theorem 1 for cyclically
4-connected graphs (with a better constant in this case). In this lecture, we explore
the links of Conjecture 1 with fullerenes.

2 Fullerenes

A fullerene is a cubic carbon molecule in which the atoms are arranged on a sphere
in pentagons and hexagons. Since the discovery of the first fullerene molecule [4] in
1985, the fullerenes have been objects of interest to scientists all over the world.

Many properties of fullerene molecules can be studied using mathematical tools
and results. Thus, fullerene graphs were defined as cubic planar 3-connected graphs
with pentagonal and hexagonal faces. Such graphs are suitable models for fullerene
molecules: carbon atoms are represented by vertices of the graph, whereas the edges
represent bonds between adjacent atoms.

Since all carbon atoms are 4-valent, for every atom precisely one of the three bonds
should be doubled. Such a set of double bonds is a Kekulé structure in a fullerene.
So, the set of doubled bonds in a fullerene is precisely a perfect matching in the
corresponding fullerene graph. Let M be a perfect matching in a fullerene graph G.
A hexagonal face is resonant if it is incident with three edges in M . The maximum
size of a set of resonant hexagons in G is the Clar number of G.
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It turns out that the Clar number is highly related to the stability of the molecule.
It is natural to ask whether highly unstable fullerenes can theoretically exist. This
question amounts to know whether all fullerene graphs have an exponential number
of perfect matchings (in terms of the number of vertices).

The computation of the average number of perfect matchings in fullerene graphs
with small number of vertices [12] indicates that this number should grow exponen-
tially with the number p of vertices.

Yet, until 2008, the known general lower bounds for the number of perfect match-
ings in fullerene graphs were linear in the number of vertices [10, 11, 15]. The best

of them asserts that a fullerene graph with p vertices has at least
⌈

3(p+2)
4

⌉
differ-

ent perfect matchings [15]. Moreover, several special classes of fullerene graphs with
exponentially many perfect matchings are known. Such classes of fullerene graphs
either have the special structure of nanotubes [5], have high symmetry [12] or are ob-
tained using specific operations [13]. Recently, it was finally proved that all fullerene
molecules have a linear number of resonant hexagons, hence an exponential number
of Kekulé structures [8]. In the next section, we establish this fact.

3 Fullerene graphs have exponentially many per-

fect matchings

First, we give some definitions. Let G = (V, E) be a cubic graph. A k-edge-cut of G
is set of k edges the removal of which disconnects G. An edge-cut X is cyclic if at
least two connected components of G−X contain a cycle. A cyclic edge-cut is trivial
if at most one connected components of G−X is neither a tree nor a cycle.

It directly follows from the definition that fullerene graphs have no cyclic 4-edge-
cuts. On other hand, every fullerene has a trivial cyclic 5-edge-cut, since every
fullerene has a face of size 5. Moreover, it was proved that fullerene graphs with
non-trivial 5-edge-cuts have a very special structure [5, 9]. To be more precise, they
are composed of a pentagon surrounded by a “layer” of five pentagons, then a non-
negative number of “layers” of hexagons, and next a “layer” of five pentagons, the
outer face being the twelveth pentagon (see Figure 1(a)). If k is the number of lay-
ers of hexagons (also called hexagonal rings), then the total number of vertices is
10 · (k + 2). Observe that every set composed of precisely one edge between two
consecutive layers can be extended to a perfect matching in a natural way. For in-
stance, in Figure 1(b) we see a fullerene graph with two layers of hexagons, and the
dashed edges for a set of pre-selected edges containing exactly one edge between any
two consecutive layers. The bold edges then show how to extend this matching to a
perfect matching. As a result, every fullerene on p vertices with a non-trivial cyclic
5-edge-cut has at least 5

p−20
10 perfect matchings. The interested reader can consult

the paper of Qian and Zhang [6] for an exact computation of the number of perfect
matchings in those fullerene graphs.
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Figure 1: (a) The general shape of fullerene graphs with non-trivial cyclic 5-edge-cuts,
and (b) a fullerene with two layers of hexagons, the dashed edges are pre-selected and
the bold edges show a completion to a perfect matching.

Note also that such fullerene graphs are Hamiltonian. It is a long-standing open
problem to determine whether all fullerene graphs are Hamiltonian.

In the rest, we focus on fullerene graphs with no non-trivial cyclic 5-edge-cuts.

Theorem 2 (Kardoš, Král’, Mǐskuf and Sereni, 2008). Let G be a fullerene graph with
p vertices that has no non-trivial cyclic 5-edge-cut. The number of perfect matchings
of G is at least 2

p−380
61 .

Proof. We find a perfect matching M in G such that there are at least p−380
61

disjoint
resonant hexagonal faces. Since in each such resonant hexagon we can switch the
matching to the other edges of the hexagon independently of the other resonant
hexagons, the bound will follow immediately.

The dual graph G∗ of the graph G is a plane triangulation with 12 vertices of
degree 5 and all other vertices of degree 6. Let U = {u1, . . . , u12} be the set of
vertices of degree 5. Our aim is to construct a set W of vertices of G∗ of degree 6 and
such that:

• the distance between v and v′ in G∗ is at least 5 for all v, v′ ∈ W , v 6= v′;

• the distance between v and u in G∗ is at least 3 for all v ∈ W and u ∈ U .

We present a greedy algorithm to construct such a set W . Initially, we set W0 = ∅,
and we color all the vertices at distance at most 2 from any ui by the white color.
The remaining vertices are colored black. White vertices cannot be chosen as vertices
of W . For each ui ∈ U there are at most 5 vertices at distance 1 and at most 10
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vertices at distance 2. Hence, there are at most 12 · (1 + 5 + 10) = 192 white vertices
initially.

Until there are some black vertices, we choose a black vertex vk and add it to the
constructed set, i.e. Wk := Wk−1 ∪{vk}. We recolor all vertices at distance at most 4
from vk (including vk) white. Since for any vertex v of degree 6 there are at most 6d
vertices at distance d, there are at most 1 + 6 + 12 + 18 + 24 = 61 new white vertices.
This procedure terminates when there are no black vertices.

Let W be the resulting set Wk. The set W contains at least f−192
61

vertices where

f is the number of faces of G. By Euler’s formula, f = p
2

+ 2 and thus |W | ≥ p−380
122

.

v

Figure 2: The configuration R(v) and the six vertices in R∗(v).

We next describe how to construct a matching in G with a lot of disjoint resonant
hexagons. Given a vertex v ∈ W , let R(v) be the set of vertices at distance at most 2
from v (see Figure 2). The vertices at distance 2 from v form a cycle of length 12 in
G∗. This cycle is an induced cycle of G∗ since G∗ has no non-trivial cyclic 5-edge-cut.
Let R∗(v) be the set formed by the 6 independent vertices of R(v) drawn with full
circles in Figure 2. Since G has no non-trivial cyclic 5-edge-cut, all the vertices in
R∗(v) are different and form an independent set in G∗.

H0 H

Figure 3: The structure of the graphs H0 and H.

The sets R∗(v) for v ∈ W are pairwise disjoint since W only contains vertices at
distance at least 5. We now modify the graph G∗ to planar graphs H0 and H. For
every vertex v ∈ W , delete v and the six neighbors of v. Let H0 be the resulting

8-4



graph. Further identify the six vertices of R∗(v) (see Figure 3). The final plane graph
is denoted by H.

The Four Color Theorem[1, 2, 7] asserts the existence of a proper vertex coloring
of H using four colors. The coloring of H yields a precoloring of H0 such that the six
vertices of each set R∗(v) have the same color. Let c(v) be this color.

We extend the precoloring of H0 to a proper coloring of G∗. We first color each
vertex v by the color c(v). For each v ∈ W , there are only six uncolored vertices
inducing a 6-cycle (the vertices adjacent to v), and each such vertex has three neigh-
bours colored with c(v) and one vertex colored with a different color. Therefore, for
each such uncolored vertex, there are 2 available colors. Since every cycle of length
six is 2-choosable [3, 14], there is an extension of the coloring of H0 to G∗. The 4-
coloring of G∗ corresponds to a proper 3-edge coloring of G. To see this, assume that
the vertices of the graph G∗ are colored with colors 1, 2, 3, and 4. There are edges of
6 different color types: 12, 13, 14, 23, 24, and 34. Color the edges of G corresponding
to the edges of G∗ of types 12 and 34 (which are pairwise disjoint) by the color a, the
edges of G corresponding to the edges of G∗ of types 13 and 24 by the color b, and
the remaining edges, i.e. the edges corresponding to the edges of G∗ of types 14 and
23, by the color c. Since the graph G is cubic, each of the color classes a, b, and c
forms a perfect matching of G.

Let f be a face corresponding to a vertex w adjacent to v ∈ W in G∗. Since w has
three (non-adjacent) neighbors in G∗ colored with the color c(v), the corresponding
three non-adjacent edges incident with f are colored with the same color. Hence, the
face f is resonant in one of the three matchings formed by the edges of the color a,
the edges of the color b, and the edges of the color c.

There are 6 such resonant hexagons for the three matchings for each v ∈ W .
Altogether, there are 6|W | resonant hexagons. Therefore, one of the matchings has
at least 2|W | ≥ p−380

61
resonant hexagons. Observe that the resonant hexagons in one

color class are always disjoint: if they were not disjoint, they would correspond to
two adjacent neighbors w and w′ of some vertex v ∈ W . But the colors assigned to
w and w′ are different, in particular, the edges corresponding to vw and vw′ have
different colors. Hence, the hexagons corresponding to w and w′ are resonant for
different colors a, b, or c. The desired bound on the number of perfect matchings
readily follows.

Theorem 2 combined with the lower bound of 5
p−20
10 derived earlier on the number

of perfect matchings in fullerene graphs with non-trivial cyclic 5-edge cuts yields the
following.

Corollary 3. Every fullerene graph with p vertices has at least 2
p−380

61 perfect match-
ings.
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