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1 Introduction

As announced in the previous lecture, our goal is to prove the following theorem
of Chudnovsky and Seymour [1]. It is the first step of their proof that Lovász and
Plummer’s conjecture holds for planar graphs.

Theorem 1 (Chudnovsky and Seymour, 2008). Every cyclically 4-connected planar
cubic graph on n vertices has at least 2n/92928 perfect matchings.

Before going into more details, let us recall the following equivalence proved by
Tait [3] in 1880. The proof is left as an exercise; the reader can consult Diestel’s
book [2] or West’s monograph [5] for more explanations on this.

Theorem 2. Every planar graph is 4-colourable if and only if every planar bridgeless
graph is 3-edge-colourable.

The general idea of the proof is well-explained in the introduction of the original
paper [1], to which we refer. In few words, the authors make the following remarks.
First, the planarity brings two things: a source of triple of perfect matchings covering
all edges (since the graphs we consider are 3-edge-colourable); second, the faces give
us cycles that can be removed without drastically decreasing the connectivity of the
graph. The proof of Theorem 1 goes as follows. Fix a cyclically 4-connected planar
cubic graph G. A set of disjoint even cycles (which will be either even faces, or the
union of two adjacent odd faces) of linear size is found. This set has exponentially
many subsets. For every such subset X, and for each cycle C in X, we can delete
the even edges of C and double the odd edges. The graph HX we obtain is cubic and
planar. So, if it has no cut-edge, then it is 3-edge-colourable and hence we obtain a
triple of perfect matchings of the original graph G. A key observation (see the proof of
Proposition 3) is that X can be reconstructed from this triple of perfect matchings.
In particular, if we have k such subsets X, we would obtain k1/3 distinct perfect
matchings of G provided we can obtain for each subset X a planar cubic bridgeless
graph HX in the way described above. To this end, we will need to carefully choose
the even and odd edges of each cycle C in X (which comes from the fact that the
cycles in X may be too close to allow us an arbitrary choice).

We now introduce the notation used in the proof, using Chudnovsky and Sey-
mour’s terminology.
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Given a graph G, we let V (G) and E(G) be its vertex-set and edge-set, respec-
tively. For X ⊂ V , the set of edges of G with exactly one endvertex in X is δ(X).
An edge-cut is a subset Y of edges such that Y = δ(X) for some X ⊆ E(G).

Assume that G is cubic. A look on G is a mapping ω : E(G) → {−1, 0, 1} such
that ω(δ({v})) = 0, where ω(Y ) :=

∑
e∈Y ω(e) for every Y ⊆ E. A look ω is good

if ω(D) 6= 1 − |D| for every edge-cut D. In particular, if ω is a good look of G and
H is the graph obtained from G by removing all the edges in ω−1({−1}), then any
cut-edge e of H satisfies ω(e) = 1.

The relevance of good looks is made explicit by the following proposition.

Proposition 3. Every planar cubic graph with k good looks has at least k1/3 perfect
matchings.

Proof. Let ω be a good look of G, and let Hω be obtained from G by removing the
edges in ω−1({−1}) and adding an edge parallel to every edge e with ω(e) = 1. Thus,
Hω is cubic and planar. Moreover, since ω is a good look of G, the graph Hω has no
cut-edge. So H is a planar bridgeless cubic graph and hence it is 3-edge-colourable
by the 4-Colour Theorem. Consequently, there exist three disjoint perfect matchings
of Hω. They yield three (non-necessarily) disjoint perfect matchings of G. So each
good look ω gives rise to a triplet Tω of perfect matchings of G.

We assert that the mapping f : ω 7→ Tω is injective, i.e. two different good looks
of G give rise to two different triplets of perfect matchings. To see this, just notice
that for every good look ω, every edge e of G is in exactly 1 +ω(e) perfect matchings
of Tω. Now, the fact that f is injective implies that the number of triplets is at least
k, and hence the number of perfect matchings of G is at least k1/3.

2 The proof of Theorem 1

The result proved is stronger than Theorem 1. This fact is crucial to deal with the
3- and 2-connected cases.

Let G be a graph and C an even cycle of G. A mapping ω0 : E(C) → {−1, 1}
such that the edges of C are mapped alternately to −1 and 1 is a bracelet on C. A
bracelet of G is a mapping ω on the edges of G for which there exists an even cycle
C of G for which ω restricted to E(C) is a bracelet on C. Then, C is the supporting
cycle of ω. Given a bracelet ω0 on C, the look of the bracelet ω0 is the mapping ω
defined by ω(e) := ω0(e) if e ∈ E(C), and ω(e) := 0 otherwise. Note that if ω0 and
ω1 are two bracelets of G with disjoint supporting cycles, then the sum of their look
is a look of G.

Let G be a cubic graph. A jewel-box for G is a set B of bracelets of G such that

• every two members of B have disjoint supporting cycles; and

• for every subset W ⊆ B, the sum of the looks of the members of W is a good
look.
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Let β(G) be the cardinality of a largest jewel-box of G.
A cubic graph G is cyclically 4-connected if it is 3-connected, and for every set

X ⊂ V (G) such that both |X| and V (G) \ X are at least 2, the size of δ(X) is at
least 4. We prove the following.

Theorem 4. For every cyclically 4-connected cubic graph G,

β(G) ≥ |V (G)|
30976

.

Note that Theorem 4 implies Theorem 1 by Proposition 3.
We start with the following lemma, which illustrates some standard counting

techniques in planar graphs (e.g. the use of the 4-Colour Theorem to ensure the
existence of an independent set containing at least a quarter of the vertices).

Lemma 5. Let G be a simple planar graph and let A ⊆ V (G) be an independent set
of G. Set d := max{degG(a) : a ∈ A}. Then, there exist X ⊆ A and Y ⊆ V (G) \ A
such that

• |X| ≥ |A|
64·d+8

;

• each member of X is adjacent to at most two members of Y ; and

• every two members of X are at distance at least 4 in G− Y .

Proof. Define Y to be the set of vertices in V (G) \ A with at least 10 neighbours
in A. We proceed in three steps. Let A1 be the set of vertices in A with at most
two neighbours in Y , and set A2 := A \ A1. We assert that |A1| ≥ 1

2
· |A|. To

see this, assume that A2 6= ∅, and so Y 6= ∅. Hence, |A ∪ Y | ≥ 11. Let H1 be
the bipartite subgraph of G with vertex-set A ∪ Y and edge-set composed of all the
edges of G between A and Y . Since H1 is a simple bipartite planar graph on at
least 3 vertices, it follows from Euler’s Formula that |E(H1)| ≤ 2 · |V (H1)| − 4. On
the other hand, |E(H1)| ≥ 10 · |Y | by the definition of Y . Consequently, 10|Y | ≤
2(|A| + |Y |)− 4 and thus |Y | ≤ 1

4
· |A|. Now, let H2 be the subgraph of H1 induced

by A2 ∪ Y . Then |V (H2)| ≥ 4 since A2 6= ∅. So, Euler’s Formula implies that
|E(H2)| ≤ 2 · (|A2| + |Y |) − 4. Moreover, it follows from the definition of A2 that
|E(H2)| ≥ 3 · |A2|. Thus, we deduce that |A2| ≤ 2 · |Y |. Therefore, we obtain
|A2| ≤ 2 · 1

4
· |A|, and hence |A1| ≥ 1

2
· |A|, as asserted.

It remains to find a subset of A1 satisfying the third condition (and being large
enough), which is done in two steps. First, we define H3 to be the graph with vertex-
set A1 in which two distinct vertices u and v are adjacent if and only if there exists
a path of length 2 from u to v in G− Y . We conclude the proof by showing that H3

contains a sufficiently large independent set. Recall that every vertex of A has degree
at most d in G, and every vertex of V (G) \ (A ∪ Y ) has at most 9 neighbours in Y .
Thus, it follows that for each vertex v ∈ A, there are at most 8d paths of length 2
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in G − Y between v and A. In other words, the maximum degree of H3 is at most
8d. Hence, H3 can be properly vertex coloured with 8d + 1 colours. So, H3 has an
independent set A3 of size at least |V (H3)|/(8d+ 1) = |A1|/(8d+ 1). Note that every
two vertices of A3 are at distance at least 3 in G− Y .

Now, let G′ be the graph obtained from G − Y by contracting every edge with
an end-vertex in A3. Let H4 be the subgraph of G′ induced by A3. Thus, H4 has
vertex-set A3, and two distinct vertices of A3 are adjacent in H4 if and only if they
are at distance 3 in G − Y . Moreover, H4 is planar and simple. By the 4-Colour
Theorem, H4 has an independent set A4 of size at least 1

4
· |A3|. Observe that A4 is

an independent set of G contained in A and satisfying the second and third condition
of the lemma. Further,

|A4| ≥
1

4
· |A3| ≥

|A1|
4 · (8d+ 1)

≥ |A|
8 · (8d+ 1)

,

which concludes the proof.

We now prove Theorem 4 in four steps.
Let G be a cyclically 4-connected planar cubic graph with n vertices. We embed

G on the sphere Σ (recall that a 3-connected planar graph has a unique embedding
on the sphere, and hence a unique dual graph, which is also 3-connected and simple).
Let G∗ be the dual of G. A domino of G is a closed disc ∆ ⊆ Σ the boundary of
which is a cycle of G containing exactly either one face of G of even length, or two
faces of G of odd length.

Lemma 6. There exists at least n
32

pairwise disjoint dominos of G, each having a
boundary of length at most 15.

Proof. Let f be the number of faces of G. By Euler’s Formula,

f = |E(G)| − |V (G)|+ 2 =
n

2
+ 2 .

The dual G∗ of G is a planar triangulation, which is 4-connected (why?). Hence,
Whitney’s theorem [6] ensures that G∗ is Hamiltonian (this theorem was generalised
to all 4-connected planar graphs by Tutte [4]). Let F1, f2, . . . , Ff be an enumeration
of the faces of G that corresponds to a Hamilton cycle of G∗. Hence, for every integer
i ∈ {1, 2, . . . , r}, the faces Fi and Fi+1 of G share an edge (where the subscript is
modulo r). Without loss of generality, we may assume that Ff is a face of G of
maximum size. Let k := bf/2c. The average length of the faces F1, F2, . . . , F2k is
at most that of all the faces of G, which is less than 6 (since every planar graph is
5-degenerate).

For every i ∈ {1, 2, . . . , k}, the closure of one of F2i−1, F2i and F2i−1 ∪ F2i is a
domino ∆i of G. The length of ∆i is at most the sum of the lengths of F2i−1 and F2i

minus 2. Hence, the average length of the dominos ∆1,∆2, . . . ,∆k is less than 10.
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Let us check that at least half of them have length at most 15. Indeed, the minimum
length of a domino is 4 (recall that G is simple), so letting x be the number of dominos
of length more than 15, we obtain

16x+ 4(k − x) < 10k ,

i.e. x < k/2. Now, say that two dominos are adjacent if their boundaries share an
edge in G. We let H be the graph defined by this adjacency relation on the at least
k/2 dominos ∆i of length less than 16. Note that H is loopless and planar. Thus,
the 4-Colour Theorem implies that H has an independent set of size at least

1

4
· k

2
≥ f − 1

16
>

n

32
,

which concludes the proof.

In the rest, we let A be a set of dominos given by Lemma 6. Let R be the set of all
faces not contained in any member of A. Let H be the graph with vertex-set A ∪R,
in which ∆ ∈ A and F ∈ R are adjacent if and only if the boundaries of ∆ and F
share an edge, and two distinct faces f and f ′ in R are adjacent if their boundaries
share an edge. So, H is simple (since G is 3-connected) and planar. Moreover, A
induces an independent set of H composed of vertices of degree at most 15. As a
result, Lemma 5 implies the existence of two sets X ⊆ A and Y ⊆ R such that

• |X| ≥ |A|/968 ≥ n/30976;

• each member of X is adjacent to at most two members of Y ; and

• every two members of X are at distance at least 4 in G− Y .

Let us write X = {∆1, . . . ,∆k} with k ≥ n/30976. We want to use X to construct
a jewel-box of G. For i ∈ {1, . . . , k}, let Ci be the cycle of G forming the boundary
of ∆i. There are two bracelets on Ci, and we choose one as follows.

If ∆i is adjacent in H to at most one member of Y , then choose any bracelet ωi

of Ci. Otherwise, let F1 and F2 be the two neighbours of ∆i that belong to Y . If F1

or F2 shares a unique edge e with ∆i, then choose the bracelet ωi on Ci such that
ωi(e) = 1. Otherwise, i.e. if both F1 and F2 share more than one edge with ∆i, then
choose any bracelet ωi on Ci.

It remains to show that {ω1, . . . , ωk} is a jewel-box of G. Choose a set W ⊆
{1, . . . , k}, and let ω be the sum of the looks of all bracelets ωi with i ∈ W . We need
to show that ω is a good look. As we noted earlier, ω is a look since the supporting
cycles of the looks ωi are pairwise disjoint. Hence, we now check that it is good, i.e.
for every edge-cut D of G, it holds that ω(D) 6= 1− |D|.

Suppose on the contrary that D is an edge-cut of G such that ω(D) = 1−|D|. We
choose D such that |D| is minimal subject to this property. Note that there exists
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Figure 1: The domino ∆j is composed of the two faces s and s′, each being of odd
length.

an edge f ∈ D such that ω(f) = 0, and all the others edges of D are mapped to −1
by ω. First, we observe that D is then a minimal edge-cut of G. Indeed, if D′ ⊂ D
is also an edge-cut of G, then so is D \ D′. Hence, we may assume that f ∈ D′.
Therefore, D′ is an edge-cut of G such that ω(D′) = 1 − |D′| and |D′| < |D|, which
contradicts the minimality of |D|.

Since D is a minimal edge-cut, there is a cycle C in G∗ such that E(C) = D (from
now on, we identify the edges of G and G∗ in the natural way). Let S be the set of
faces of G not contained in R, i.e. the set of faces contained in some domino ∆ ∈ A.
For i ∈ {−1, 0, 1}, we set Φi := ω−1({i}). Hence, Φ−1,Φ0 and Φ1 form a partition of
the edges of G, exactly one edge of D belongs to Φ0, all the other belonging to Φ−1.

Lemma 7. Let s ∈ V (C)∩S and let r1 and r2 be its two neighbours in C. Then one
of r1 and r2 does not belong to Y .

Proof. Suppose on the contrary that both r1 and r2 are in Y , and hence in R. Let
∆ be the (unique) domino of A that includes s (it exists since s ∈ S). Let ei be the
edge (of C) between s and ri, for i ∈ {1, 2}. Since D = E(C), at least one of e1 and
e2 belongs to Φ−1. Consequently, ∆ ∈ X. Let us write ∆ = ∆j with j ∈ W . So both
e1 and e2 belong to the boundary of ∆j, and hence ωj(e1) = −1 = ωj(e2). Therefore,
it follows from the definition of ωj that each of r1 and r2 shares two edges with the
boundary of ∆j. Since G is 3-connected, this implies that ∆j contains two (odd) faces
s and s′, which share an edge v1v2 drawn in the interior of ∆j in the embedding of G
(See Figure 1). Further, both r1 and r2 share an edge with both s and s′. Because
G is cyclically-4-connected, neither r1 nor r2 is incident with both v1 and v2. Thus,
we may assume that ri is incident with vi (and not with v3−1) for i ∈ {1, 2}. But
then, the fact that ωj(e1) = ωj(e2) contradicts that the face s had odd lenght (see
Figure 1). This concludes the proof.

Lemma 8. Let e be the unique edge of C in Φ0. In G∗, either both ends of e are in
R or both are in S.

Proof. Suppose on the contrary that e = rs with r ∈ R and s ∈ S. Let r′ be the
second neighbour of s in C. Since ωj(r

′s) = −1 and s ∈ S, we deduce that s is
contained in a domino ∆j with j ∈ W . So every edge of the boundary of ∆j belongs
to Φ−1 ∪ Φ1, which contradicts that e ∈ Φ0.
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We prove a last lemma before concluding the proof of Theorem 1.

Lemma 9. Assume that e′ = ss′ is an edge of G∗ with s, s′ ∈ S. If both s and s′

belong to C, then they are adjacent in C.

Proof. Let P1 and P2 be the two paths between s and s′ on C. In one of them,
say P1, every edge is in Φ−1. Let e be the edge of G corresponding to the edge e′

of G∗. In the embedding of G, the edge e is drawn in the interior of a member of
A. Therefore, e ∈ Φ0. So, the cycle C1 of G∗ obtained by adding e to P1 satisfies
ω(E(C1)) = 1 − |E(C1)|. Consequently, it follows from the minimality of D that
|E(C1)| = |E(C)|, i.e. P2 is the single edge e.

We now conclude the proof of Theorem 4. Recall thatG∗ is simple and 3-connected
(because G is 3-connected), so C has length has least 3. Moreover, every edge in Φ−1

has an end in R and the other in S (in G∗). Consequently, Lemma 8 implies that the
length of C is odd. Moreover, C has a unique edge e with both ends in R or both
ends in S, and e ∈ Φ0. Let us write |E(C)| = 2t+ 1 for some positive integer t.

First, suppose that = 1. Then, the three faces of G corresponding to the vertices of
C are pairwise adjacent. Since G is cyclically-4-edge connected, these three faces share
a common vertex v. Now, two edges incident with v belongs to Φ−1, a contradiction.

Assume now that t ≥ 2. We consider two cases regarding whether C has two
consecutive vertices that belong to S. Suppose that C = s0, r1, s1, r2, s2, . . . , rt, st. For
each i ∈ {1, 2, . . . , t}, there is a domino ∆ ∈ A such that si ∈ ∆. Since, risi ∈ Φ−1,
it follows that ∆ = ∆j(i) for some j(i) ∈ W . Lemma 9 implies that j(i) 6= j(i′) if
i 6= i′. So we may assume that j(i) = i for every i ∈ {1, 2, . . . , t}. Note that ∆t is the
closure of s0 and st. Now, in H the vertex rt is adjacent to two vertices of X, namely
∆t−1 and ∆t. Thus, rt ∈ Y . Similarly, rt−1 ∈ Y . Thus, s1 contradicts Lemma 7.

It remains to deal with the case where C has two consecutive vertices that belong
to R. Let us write C = r0, s1, r1, s2, r2, . . . , st, rt. As before, we can assume that for
each i ∈ {1, 2, . . . , t} the domino ∆i contains si. If t ≥ 3, then (in H) both r1 and r2
belong to Y . Hence, s2 contradicts Lemma 7. So t = 2; in this case, observe that one
of r0 and r2 belongs to Y , since ∆2, r0, r2,∆1 is a path of H of length 2 between ∆1

and ∆2, two members of X. As a result, s1 or s2 contradicts Lemma 7 since r1 ∈ Y .
This contradiction concludes the proof of Theorem 4.

3 Concluding Words

What about the general case? Deducing the general case from Theorem 1 is not easy.
Actually, Chudnovsky and Seymour point out that they need to use the stronger
statement of Theorem 4, rather than just that of Theorem 1. They proceed in two
steps: first they extend Theorem 4 to 3-connected planar cubic graphs, and then to
general planar cubic graphs (obtaining a smaller constant each time).
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It seems hard to proceed by induction, though it is very tempting. Rather, the
authors decompose the graph using a set of 3-edge-cuts. To do so, they introduce a
nice tool, called a cut-decomposition. Let us end by stating the definition.

Let G be a graph. A cut-decomposition of G is a pair (T,Φ) where

• T is a tree with at least one edge;

• Φ is a map from V (G) to V (T ); and

• for each t ∈ V (T ) of degree at most 2, there exists a vertex v of G such that
Φ(v) = t.

Let e ∈ E(T ) and let T1 and T2 be the two components of T−e. Then, δ(Φ−1(V (T1)) =
δ(Φ−1(V (T2)) is a cut of G.
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