MyoNet : MyoNet

    Fed DBGS    /wikili/index.php/

MyoNet : MyoNet

    Responsible : Julie Thompson
    Participants : Julie Thompson
    Description : Our team will characterize of the total set of mouse proteins involved directly or indirectly in the transcriptional processes. This will require an in depth sequence, structural, evolutionary (SSE) and functional analysis of the mouse proteome with the major objective of defining and delineating any conserved domains or regions that might be associated to known transcriptional modules. This work will be performed in collaboration with M. Andrade’s team (Ottawa, Canada) in the context of the International Regulome Consortium (http://www.internationalregulomeconsortium.ca/). In the framework of the proposed Decrypthon project, the SSE analysis of the entire human/mouse proteome (~60 000 proteins including splice variants and the human or mouse specific proteins) will involve a pipeline of processes starting with homology identification, multiple sequence alignment, structural and functional subfamily classification, orthology/paralogy analysis and phylogenetic reconstruction. We will take advantage of the previous developments performed on the Decrypthon grid, notably those concerning the MACSIMS (Multiple Alignment of Complete Sequence Information Management System) functional annotation and new protocols will be developed including PSI-Blast searches to detect distantly related proteins, recent multiple alignment algorithms implementation and phylogenetic tree algorithms. Protocols ensuring automated updating and storage in a relational database, hosted by the Decrypthon, will be developed. The results will be combined with the data from the transcriptomal analysis performed in vivo. This complementary approach is expected to help us to identify and characterise the transcriptional networks involved in muscle development, specification, regeneration and myogenic progression. In vivo functional validation will be done using mouse molecular genetics and expertise in muscle biology in the laboratory of F. Relaix.